Капиллярная жидкость. Смачивание и капиллярность

МОУ «Лицей № 43»

(естественно-технический)

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ
Рожков Дмитрий

Саранск


2013
Оглавление

Обзор литературы 3

Свойства жидкостей. Поверхностное натяжение 3

Опыт Плато 6

Явления смачивания и не смачивания. Краевой угол. 7

Капиллярные явления в природе и технике 8

Кровеносные сосуды 10

Пена на службе у человека 11

Практическая часть 11

«Изучение капиллярных свойств различных образцов пористой бумаги» 11

Выводы и заключения 13

Библиографический список 13

Обзор литературы

Капиллярные явления – это физические явления, обусловленные поверхностным натяжением на границе раздела несмешивающихся сред. К таким явлениям относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с другой жидкостью, газом или собственным паром.

Капиллярные явления охватывают различные случаи равновесия и движения поверхности жидкости под действием сил межмолекулярного взаимодействия и внешних сил (в первую очередь, силы тяжести). В простейшем случае, когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. Так в условиях невесомости ограниченный объём жидкости, не соприкасающейся с другими телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме и, следовательно, поверхностная энергия жидкости в этом случае минимальна. Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой).

Свойства систем, состоящих из многих мелких капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их образования во многом определяются кривизной поверхности частиц, то есть капиллярными явлениями. Не меньшую роль капиллярные явления играют и при образовании новой фазы: капелек жидкости при конденсации паров, пузырьков пара при кипении жидкостей, зародышей твердой фазы при кристаллизации.

При контакте жидкости с твердыми телами на форму её поверхности существенно влияют явления смачивания, обусловленные взаимодействием молекул жидкости и твердого тела.

Капиллярное впитывание играет существенную роль в водоснабжении растений, передвижении влаги в почвах и других пористых телах. Капиллярная пропитка различных материалов широко применяется в процессах химической технологии.

Искривление свободной поверхности жидкости под действием внешних сил обусловливает существование так называемых капиллярных волн («ряби» на поверхности жидкости). Капиллярные явления при движении жидких поверхностей раздела рассматривает физико-химическая гидродинамика.

Капиллярные явления впервые были открыты и исследованы Леонардо да Винчи, Б.Паскалем (17 в.) и Дж. Жюреном (Джурин, 18 в.) в опытах с капиллярными трубками. Теория капиллярных явлений развита в работах П. Лапласа (1806), Т. Юнга (Янг, 1805), Дж. У. Гиббса (1875) и И.С. Громеки (1879, 1886).

Свойства жидкостей. Поверхностное натяжение

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (рис. 1).

Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Жидкости, как и твердые тела, изменяют свой объем при изменении температуры. Для не очень больших интервалов температур относительное изменение объема ΔV/V 0 пропорционально изменению температуры ΔT:

Коэффициент β называют температурным коэффициентом объемного расширения. Тепловое расширение воды имеет интересную и важную аномалию для жизни на Земле. При температуре ниже 4°С вода расширяется. Максимум плотности ρ в = 10 3 кг/м 3 вода имеет при температуре 4°С.

При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0°С. В более плотных слоях воды, у дна водоема, температура оказывается порядка 4 °С. Благодаря этому, может существовать жизнь в воде замерзающих водоемов.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости (рис.2)

Рис.2

Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔA внеш, пропорциональную изменению ΔS площади поверхности:
ΔA внеш = σΔS.
Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м 2) или в ньютонах на метр (1 Н/м = 1 Дж/м 2).

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия E p поверхности жидкости пропорциональна ее площади:
E p = A внеш = σS.
Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму (рис.3)
.

Рис.3
Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Так как всякая система самопроизвольно переходит в состояние, при котором ее потенциальная энергия минимальна, то жидкость должна самопроизвольно переходить в такое состояние, при котором площадь ее свободной поверхности имеет наименьшую величину. Это можно показать с помощью следующего опыта.

На проволоке, изогнутой в виде буквы П, укрепляют подвижную поперечину (рис. 4). Полученную таким образом рамку затягивают мыльной пленкой, опуская рамку в мыльный раствор. После вынимания рамки из раствора поперечина перемещается вверх, т. е. молекулярные силы действительно уменьшают площадь свободной поверхности жидкости.

Рис.4
Поскольку при одном и том же объеме наименьшая площадь поверхности имеется у шара, жидкость в состоянии невесомости принимает форму шара. По этой же причине маленькие капли жидкости имеют шарообразную форму. Форма мыльных пленок на различных каркасах всегда соответствует наименьшей площади свободной поверхности жидкости.

Опыт Плато

Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если сосуда нет, либо же принимает форму сосуда. Находясь внутри другой жидкости такой же плотности, жидкость принимает естественную, шарообразную форму.

Рис.5
Оливковое масло всплывает в воде, но тонет в спирте. Можно приготовить такую смесь воды и спирта, в которой масло будет находиться в равновесии. Введём с помощью стеклянной трубки или шприца в эту смесь немного оливкового масла: масло соберётся в одну шарообразную каплю, которая будет висеть неподвижно в жидкости. Если пропустить через центр масляного шара проволоку и вращать её, то масляный шар начинает сплющиваться, а затем, через несколько секунд, от него отделяется кольцо из маленьких шарообразных капелек масла. Этот опыт впервые произвел бельгийский физик Плато.

В гигантских масштабах такое явление можно наблюдать у нашей звезды Солнца и планет-гигантов. Вращаются эти небесные тела вокруг своей оси очень быстро. В результате такого вращения тела очень сильно сжаты у полюсов.



Рис.6

Явления смачивания и не смачивания. Краевой угол.

Смачивание и не смачивание – капиллярные явления широко распространены в природе и технике. Они важны как в повседневной жизни, так и для решения важнейших научно-технических задач. Знания по этим вопросам позволяют ответить на многие вопросы. Например, что капиллярные явления позволяют всасывать питательные элементы, влагу из почвы корневой системой растительности, что кровообращение в живых организмах основано на капиллярном явлении, что такое флотация и где она нашла применение, почему одни твердые тела хорошо смачиваются жидкостью, другие плохо и т. д.

Если опустить стеклянную палочку в ртуть и затем вынуть ее, то ртути на ней не окажется. Если же эту палочку опустить в воду, то после вытаскивания на ее конце останется капля воды. Этот опыт показывает, что молекулы ртути притягиваются друг к другу сильнее, чем к молекулам стекла, а молекулы воды притягиваются друг к другу слабее, чем к молекулам стекла.

Если молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твердого вещества, то жидкость называют смачивающей это вещество. Например, вода смачивает чистое стекло и не смачивает парафин. Если молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твердого вещества, то жидкость называют не смачивающей это вещество. Ртуть не смачивает стекло, однако она смачивает чистые медь и цинк.

Расположим горизонтально плоскую пластинку из какого-либо твердого вещества и капнем на нее исследуемую жидкость. Тогда капля расположится либо так, как показано на рис.7(а ), либо так, как показано на рис. 7(б).


а) б)

Рис.7.
В первом случае жидкость смачивает твердое вещество, а во втором - нет. Отмеченный на рис.5 угол θ называют краевым углом . Краевой угол образуется плоской поверхностью твердого тела и плоскостью, касательной к свободной поверхности жидкости, где граничат твердое тело, жидкость и газ; внутри краевого угла всегда находится жидкость. Для смачивающих жидкостей краевой угол – острый, а для не смачивающих - тупой. Чтобы действие силы тяжести не искажало краевой угол, каплю надо брать как можно меньше.

Поскольку краевой угол θ сохраняется при вертикальном положении твердой поверхности, то смачивающая жидкость у краев сосуда, в который она налита, приподнимается, а несмачивающая жидкость опускается

При полном смачивании θ = 0, cos θ = 1.

Рис.8

Капиллярные явления в природе и технике

Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести, действующая на столб жидкости в капилляре, не станет равной по модулю результирующей F н сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: F т = F н, где F т = mg = ρhπr 2 g, F н = σ2πr cos θ.

Отсюда следует:

Искривление поверхности жидкости в узких трубках приводит к кажущемуся нарушению закона сообщающихся сосудов.

Из формулы видно, что высота h тем больше, чем меньше внутренний радиус трубки r . Подъем воды имеет значительную величину в трубках, внутренний диаметр которых соизмерим с диаметром волоса (или еще меньше); поэтому такие трубки называют капиллярами (от греческого «капиллярис» - волосной, тонкий). Смачивающая жидкость в капиллярах поднимается вверх (рис.9, а), а несмачивающая - опускается вниз (рис.9, б).

Рис.9


Капиллярные явления можно наблюдать не только в трубках, но и в узких щелях. Если опустить в воду две стеклянные пластины так, чтобы между ними образовалась узкая щель, то вода между пластинами поднимется, и тем выше, чем ближе они расположены. Капиллярные явления играют большую роль в природе и технике. Множество мельчайших капилляров имеется в растениях. В деревьях по капиллярам влага из почвы поднимается до вершин деревьев, где через листья испаряется в атмосферу. В почве имеются капилляры, которые тем уже, чем плотнее почва. Вода по этим капиллярам поднимается до поверхности и быстро испаряется, а земля становится сухой. Ранняя весенняя вспашка земли разрушает капилляры, т. е. сохраняет подпочвенную влагу и увеличивает урожай.

В технике капиллярные явления имеют огромное значение, например, в процессах сушки капиллярно-пористых тел и т. п. Большое значение капиллярные явления имеют в строительном деле. Например, чтобы кирпичная стена не сырела, между фундаментом дома и стеной делают прокладку из вещества, в котором нет капилляров. В бумажной промышленности приходится учитывать капиллярность при изготовлении различных сортов бумаги. Например, при изготовлении писчей бумаги ее пропитывают специальным составом, закупоривающим капилляры. В быту капиллярные явления используют в фитилях, в промокательной бумаге, в перьях для подачи чернил и т. п.

Большинство растительных и животных тканей пронизано громадным числом капиллярных сосудов. Именно в капиллярах происходят основные процессы, связанные с дыханием и питанием организма, вся сложнейшая химия жизни тесно связана с диффузионными явлениями. Стволы деревьев, ветви и стебли растений пронизаны огромным числом капиллярных трубочек, по которым питательные вещества поднимаются до самых верхних листочков. Корневая система растений оканчивается тончайшими нитями-капиллярами. И сама почва, источник питания для корня, может быть представлена как совокупность капиллярных трубочек, по которым в зависимости от структуры и обработки быстрее или медленнее поднимается к поверхности вода с растворёнными в ней веществами. Высота подъёма жидкости в капиллярах тем больше, чем меньше его диаметр. Отсюда ясно, что для сохранения влаги надо почву перекапывать, а для осушения – утрамбовывать.

Роль поверхностных явлений в природе разнообразна. Например, поверхностная плёнка воды является для многих организмов опорой при движении. Такая форма движения встречается у мелких насекомых и паукообразных. Наиболее известны водомерки, опирающиеся на воду только конечными члениками широко расставленных лапок. Лапка, покрытая воскообразным налётом, не смачивается водой, поверхностный слой воды прогибается под давлением лапки, образуя небольшое углубление. Подобным образом перемещаются береговые пауки некоторых видов, но их лапки располагаются не параллельно поверхности воды, как у водомерок, а под прямым углом к ней.

Некоторые животные, обитающие в воде, но не имеющие жабер, подвешиваются снизу к поверхностной плёнке воды с помощью не смачивающихся щетинок, окружающих их органы дыхания. Этим приёмом «пользуются» личинки комаров (в том числе и малярийных).

Перья и пух водоплавающих птиц всегда обильно смазаны жировыми выделениями особых желёз, что объясняет их непромокаемость. Толстый слой воздуха, заключённый между перьями утки и не вытесняемый оттуда водой, не только защищает утку от потери тепла, но и чрезвычайно увеличивает запас плавучести, действуя подобно спасательному поясу.

Воскообразный налёт на листьях препятствует заливанию так называемых устьиц, которое могло бы привести к нарушению правильного дыхания растений. Наличием того же воскового налёта объясняется водонепроницаемость соломенной кровли, стога сена и т.д.

Основной потребляющий влагу орган, где постоянно нужна вода, в том числе для фотосинтеза, – это лист, расположенный далеко от корня. Кроме того, лист окружён воздухом, который часто «отнимает» у него воду, чтобы «насытиться» водяными парами. Возникает противоречие: листу вода нужна постоянно, но он её всё время теряет, а корень постоянно имеет воду в избытке, хотя не прочь от неё избавиться. Решение этой проблемы очевидно: надо перекачать избыток воды из корня в листья. Роль такого водопровода берёт на себя стебель. Он доставляет воду к листьям по специальным трубочкам – капиллярам. У покрытосеменных они самые совершенные и представляют собой длинные (в рост самого растения) полые сосуды, стенки которых выстланы целлюлозой и лигнином. Система таких проводящих сосудов называется ксилемой (от греч. ксилон – дерево , деревянный брусок ).

Если в просвете сосудов ксилемы корня сконцентрировать минеральные вещества, которые всосал корень из почвы, в ксилему из окружающих клеток корня по механизму осмоса устремляется вода.

Механизм «водокачки» состоит из двух осмотических насосов и капиллярных сил стенок сосудов.

Кровеносные сосуды

Всё тело пронизывают кровеносные сосуды. По строению они неодинаковы. Артерии – это сосуды, по которым движется кровь от сердца. Они имеют плотные упругие эластичные стенки, в состав которых входят гладкие мышцы. Сокращаясь, сердце выбрасывает в артерию кровь под большим давлением. Благодаря плотности и упругости стенки артерии выдерживают это давление и растягиваются.

Крупные артерии по мере удаления от сердца ветвятся. Самые мелкие артерии распадаются на тончайшие капилляры. Их стенки образованы одним слоем плоских клеток. Сквозь стенки капилляров вещества, растворённые в плазме крови, проходят в тканевую жидкость, а из неё попадают в клетки. Продукты жизнедеятельности клеток проникают сквозь стенки капилляров из тканевой жидкости в кровь. В организме человека примерно 150 миллиардов капилляров. Если все капилляры вытянуть в одну линию, то ею можно опоясать земной шар по экватору два с половиной раза. Кровь из капилляров собирается в вены – сосуды, по которым кровь движется к сердцу. Давление в венах невелико, стенки их тоньше стенок артерий.

Пена на службе у человека

К самой идее флотации привела не теория, а внимательное наблюдение случайного факта. В конце XIX в. американская учительница Карри Эверсон, стирая замасленные мешки, в которых хранился медный колчедан, обратила внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и послужило толчком к развитию способа флотации. Этот способ широко используется в горно-металлургической промышленности для обогащения руд, т.е. для увеличения относительного содержания в них ценных составляющих. Сущность флотации состоит в следующем. Тонко измельчённая руда загружается в чан с водой и маслянистыми веществами, которые способны обволакивать частицы полезного минерала тончайшей плёнкой, не смачиваемой водой. Смесь энергично перемешивается с воздухом, так что образуется множество мельчайших пузырьков – пена. При этом частицы полезного минерала, облачённые в тонкую маслянистую плёнку, при соприкосновении с оболочкой воздушного пузырька пристают к ней, повисают на пузырьке и выносятся с ним наверх, как на воздушном шарике. Частицы же пустой породы, не обволакиваемые маслянистым веществом, не пристают к оболочке и остаются в жидкости. В итоге частицы полезного минерала почти все оказываются в пене на поверхности жидкости. Пену снимают и направляют на дальнейшую обработку – для получения так называемого концентрата.

Техника флотации позволяет при надлежащем подборе примешиваемых жидкостей отделить требуемый полезный минерал от пустой породы любого состава.


Практическая часть

«Изучение капиллярных свойств различных образцов пористой бумаги»

Цель работы : изучить капиллярные свойства различных образцов пористой бумаги (на примере бумажных салфеток разных производителей).

Приборы и материалы : образцы бумаги, вода дистиллированная, линейка, ванночка.

Метод выполнения:


Наименование производителя





Расчетный радиус капилляра, 10 -5 м





2,25
2,3

2,25

0,6621

4

ООО «БРИЗ» г. Новороссийск

1,8
1,75

1,78

0,837

3



1,3
1,25

1,32

1,1286

2



2,5
2,1

2,26

0,6592

4

Повторил эксперимент, заменив воду молоком.

Молоко 2,5%;

В вычислениях использовал следующие табличные значения:

 – плотность молока (1,03х10 3 кг/м 3);

 – поверхностное натяжение (для молока на границе с воздухом = 46х10 -3 Н/м)


Наименование производителя

Высота поднятия жидкости, 10 -2 м

Среднее значение высоты поднятия жидкости, 10 -2 м

Расчетный радиус капилляра, 10 -3 м

Оценка качества впитывания влаги по 4-х балльной системе

ООО «Русская бумага АЛЛ Продукция» г. Брянск

1,1
1,1

1,09

0,836

4

ООО «БРИЗ» г. Новороссийск

0,8
0,55

0,64

1,424

3

ООО «Новые технологии» г. Краснодар

0,3
0,38

0,31

2,94

2

ИП Китайкин А.Б. г. Новошахтинск Ростовская обл.

0,98
1,0

0,97

0,94

4

Выводы и заключения



  1. В результате проведенной работы получена объективная оценка качества салфеток бумажных различных производителей.

  2. Наилучшие результаты показали образцы следующих производителей: ООО «Русская бумага АЛЛ Продукция» г. Брянск и ИП Китайкин А.Б. г. Новошахтинск Ростовская обл.

  3. Худшими оказались салфетки ООО «Новые технологии» г. Краснодар, изготовленные для сети магазинов «Магнит».

  4. Лучшие салфетки могут быть рекомендованы для использования в столовой лицея №43.

Библиографический список


  1. Физическая энциклопедия. http://enc-dic.com/enc_physics/Kapilljarne-javlenija-911.html

  2. Свойства жидкостей http://physics.kgsu.ru/index.php?option=com_content&view=article&id=161&Itemid=72#q3

  3. Капиллярные явления. http://seaniv2006.narod.ru/1191.html (03.12.12)

Пусть жидкость находится в каком-либо сосуде. Если расстояния между поверхностями, ограничивающими жидкость сравнимы с радиусом кривизны поверхности жидкости, то такие сосуды называются капиллярами . Явления, происходящие в капиллярах, называются капиллярными явлениями . К капиллярным явлениям относят капиллярный подъём жидкости и капиллярное сцепление между смачиваемыми поверхностями.

Наиболее простыми и часто используемыми капиллярами являются цилиндрические капилляры (рис.10.10). Поверхность жидкости в таких капиллярах является сферической. Пусть r - радиус кривизны поверхности жидкости, R – радиус капилляра, θ – краевой угол. В случае частичного смачивания жидкость будет подниматься по капилляру под действием давления Лапласа, до тех пор, пока его не скомпенсирует гидравлическое давление жидкости:

Где ρ – плотность жидкости, g – ускорение силы тяжести, h – высота капиллярного подъёма. Радиус кривизны поверхности жидкости удобно выразить через радиус капилляра, который можно легко измерить: . Подставляя давление Лапласа для сферической поверхности выражение (10-12), получим:

В случае полного смачивания θ =0 о, cos θ =1 , r = R и формула высоты капиллярного подъёма имеет вид:

При полном несмачивании θ=180 о, cos θ = - 1, и высота капиллярного подъёма будет отрицательной, то есть поверхность жидкости опустится на величину h (рис. 10.11).

Интересно отметить, что в сообщающихся капиллярах высота уровня жидкости не одинакова. Наибольший капиллярный подъём наблюдается в самом узком капилляре, а наименьший – в самом широком капилляре (рис.10.12).

Для полного смачивания . Капиллярные явления наблюдаются при подъёме воды к поверхности почвы, при использовании промокательной бумаги, тряпки, при подъёме керосина в фитилях и т.п.

С повышением температуры коэффициент поверхностного натяжения жидкостей уменьшается, а при критической температуре равен нулю. Коэффициент поверхностного натяжения жидкостей зависит также от плотности и молярной массы жидкости. Причём зависимость коэффициента поверхностного натяжения от температуры выражена тем сильнее, чем больше плотность жидкости и меньше её молярная масса. Для определения коэффициента поверхностного натяжения можно использовать полуэмпирическую формулу:

(10-14)

Здесь В – постоянный коэффициент, практически одинаковый для всех жидкостей, Т к – критическая температура, ρ- плотность жидкости, μ – её молярная масса, τ- небольшая величина размерности температуры. Формула (10-14) неприменима вблизи критической температуры. Коэффициент поверхностного натяжения водных растворов зависит от рода растворённого вещества. Одни вещества, например, такие как спирт, мыло, стиральные порошки, растворённые в воде, имеющие меньшую, чем у воды плотность, приводят к уменьшению коэффициента поверхностного натяжения и называются поверхностно активными веществами . Поверхностно активные вещества применяют в качестве смачивателей, флотационных реагентов, пенообразователей, диспергаторов- понизителей твёрдости, пластифицирующих добавок, модификаторов кристаллизации и т.п. Увеличение концентрации таких веществ приводит к уменьшению коэффициента поверхностного натяжения. Другие вещества, растворённые в воде, например, сахар, соль, приводят к увеличению плотности раствора и увеличивают коэффициент поверхностного натяжения. Увеличение концентрации таких веществ приводит к увеличению коэффициента поверхностного натяжения. Для экспериментального определения коэффициентов поверхностного натяжения используют несколько методов измерения: метод Ребиндера, метод капиллярных волн, метод капли и пузырька и др.

Мы видели, что поверхность жидкости, налитой в сосуд, имеет некоторую кривизну вблизи границы между жидкостью и твердой стенкой сосуда, т. е. там, где заметную роль играют силы взаимодействия между молекулами жидкости, и твердого тела. В остальной своей части поверхность плоская, так как сила тяжести здесь подавляет молекулярные силы взаимодействия. Однако, если общая величина поверхности невелика, например в случае, когда жидкость находится в узком сосуде, влияние стенок простирается на всю поверхность жидкости, и она оказывается искривленной на всем своем протяжении (сосуд может считаться узким, когда его размеры сравнимы с радиусом кривизны поверхности жидкости, соприкасающейся со стенками сосуда).

Если размеры сосуда, в котором находится жидкость, или, в более общем случае, если расстояние между поверхностями, ограничивающими жидкость, сравнимы с радиусом кривизны поверхности жидкости, то такие сосуды называются капиллярными (волосными). Явления, происходящие в таких сосудах, называются капиллярными явлениями.

Рассмотрим некоторые, наиболее характерные явления, связанные с капиллярностью.

Так как для капиллярных сосудов характерна, прежде всего, кривизна поверхности жидкости в них, то естественно, что здесь больше всего сказывается влияние дополнительного давления, вызванного кривизной поверхности (давление Лапласа). Непосредственным следствием этого дополнительного давления является так называемый капиллярный подъем.

На рис. 121 изображена узкая трубка, опущенная в широкий сосуд с жидкостью. Пусть стенки трубки смачиваются жидкостью. Тогда жидкость, проникшая в трубку, образует вогнутый мениск. Пусть трубка настолько узка, что ее радиус сравним с радиусом мениска.

Вследствие давления, вызванного кривизной поверхности, жидкость, заполняющая трубку, испытывает давление направленное к центру кривизны мениска, т. е. вверх, и равное где радиус мениска и а - коэффициент поверхностного натяжения жидкости. Под действием этого давления жидкость поднимается по трубке до уровня при котором гидростатическое давление столба жидкости высотой уравновешивает давление Условием равновесия будет, следовательно, равенство

где плотность жидкости, ускорение силы тяжести. Это равенство определяет высоту подъема жидкости в капилляре.

Нетрудно установить связь между высотой подъема и радиусом трубки Обратимся для этого к рис. 122, на котором мениск и капилляр изображены в крупном масштабе. Центр сферы, частью которой является мениск, находится в точке О. Краевой угол жидкости, соприкасающейся со стенками капилляра, равен 0: Из чертежа непосредственно следует, что Поэтому равенство перепишется в виде: , откуда

В частности, для жидкости, которая полностью смачивает стенки капилляра и для которой, следовательно, имеем:

Как и следовало ожидать, высота подъема жидкости в капилляре (капиллярный подъем) растет с уменьшением радиуса капилляра и с увеличением коэффициента поверхностного натяжения жидкости.

Если жидкость не смачивает капилляра, картина будет обратной, так как мениск теперь выпуклый, а центр кривизны находится не вне, а внутри жидкости, и давление Лапласа окажется направленным вниз. Уровень жидкости в капилляре будет теперь ниже уровня в сосуде, в который опущен капилляр (отрицательный капиллярный подъем).

Разность уровней этом случае определяется уравнением (101.1) или (101.2).

Капиллярным подъемом объясняется ряд широко известных явлений: впитывание жидкости фильтровальной бумагой, изготовляемой так, чтобы в ней были узкие извилистые поры; перенос керосина вдоль фитиля, волокна которого также являются тонкими капиллярами, и т. п. Капиллярные силы обеспечивают и подъем воды из почвы по стволам деревьев: волокна древесины играют роль очень тонких капилляров.

Капиллярный подъем может, конечно, наблюдаться не только в цилиндрических капиллярах. Жидкость поднимается вверх и между двумя пластинками, разделенными узким зазором (рис. 123). Если пластины параллельна друг другу, то менискимеет цилиндрическую форму. Высота капиллярного подъема в этом случае определяется формулой

где расстояние между пластинами. Формула (101.3) получается точно таким же образом, как и (101.1). Необходимо только учесть, что под цилиндрической поверхностью жидкость испытывает давление, равное где радиус мениска (см. рис. 123), связанный с расстоянием между пластинами очевидным соотношением:

Формула (101.3) иллюстрируется следующим простым демонстрационным опытом (рис. 124). Две тщательно промытые стеклянные пластинки располагают под углом друг к другу так, чтобы образовался клин, и помещают в воду. Вода, смачивающая чистое стекло, поднимается вверх, но высота подъема в соответствии с формулой

(101.3) будет убывать по мере увеличения расстояния между пластинками. Это расстояние растет с увеличением расстояния х от ребра клина. Если - угол между пластинами, то расстояние между ними Поэтому высота уровня жидкости изменяется с изменением х по формуле

где - постоянная, характерная для данной пары «твердое тело - жидкость» и данного угла клина. Уравнение (101.4) есть уравнение гиперболы. Именно такую форму, как это хорошо известно, и имеет линия пересечения поверхности жидкости и пластин.

То обстоятельство, что у самого основания клина уровень жидкости не уходит очень высоко, объясняется тем, что невозможно вполне плотно соединить пластины. Между ними всегда остается небольшой зазор, ширина которого и определяет высоту уровня у основания клина, где

) — сила, обусловленная капиллярными явлениями. К капиллярным явлениям относятся поверхностные явления на границе жидкости с другой средой, связанные с искривлением ее .

Описание

Искривление поверхности жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, которое стремится сократить поверхность раздела и придать ограниченному объему жидкости форму с наименьшим потенциалом сил поверхностного натяжения. Силы поверхностного натяжения создают под поверхностью раздела фаз дополнительное давление (капиллярное давление), величина которого определяется формулой Лапласа:

где - поверхностное натяжение, а - средний радиус кривизны поверхности.

В случае достаточно больших масс жидкости действие поверхностного натяжения компенсируется силой тяжести, поэтому капиллярные явления проявляются прежде всего в случае нахождения жидкости в узких каналах (капиллярах) и пористых средах.

В узком канале граница раздела жидкости с газом принимает искривленную форму (мениск), выпуклую в случае несмачивания жидкостью стенок капилляра и вогнутую в случае смачивания. Выпуклый мениск создает под своей поверхностью избыточное давление, вогнутый мениск - отрицательное давление (разрежение). Последнее явление заставляет жидкость затекать в капилляры со смачиваемыми стенками, в том числе против силы тяжести, что играет важную роль во многих биологических процессах. Капиллярные явления в пористых средах отвечают за распространение грунтовых вод, пропитывание жидкостями тканей и других волокнистых материалов (эффект фитиля). При взаимодействии двух шероховатых смоченных поверхностей вблизи локальных пятен контакта возникают мениски жидкости, приводящие к возникновению капиллярной .

Иллюстрации


Авторы

  • Горячева Ирина Георгиевна
  • Шпенёв Алексей Геннадьевич

Источники

  1. Capillary action // Wikipedia, the free Encyclopedia. -www.en.wikipedia.org/wiki/Capillary_action (дата обращения: 26.07.2010).
  2. Капиллярные явления // Химическая энциклопедия. Т. 2. - М.: Советская энциклопедия, 1990. С. 310–311.
  3. Капиллярные явления // Большая Советская энциклопедия. 3-е изд., 1969–1978.

Среди процессов, которые можно объяснить с помощью поверхностного натяжения и смачивания жидкостей, стоит особо выделить капиллярные явления. Физика - это загадочная и необыкновенная наука, без которой жизнь на Земле была бы невозможна. Давайте рассмотрим наиболее яркий пример этой важной дисциплины.

В жизненной практике такие интересные с точки зрения физики процессы, как капиллярные явления, встречаются весьма часто. Все дело в том, что в повседневной жизни нас окружает много тел, которые легко впитывают в себя жидкость. Причина этому - их пористая структура и элементарные законы физики, а результат - капиллярные явления.

Узкие трубки

Капилляр - это очень узкая трубка, в которой жидкость ведет себя особым образом. Примеров таких сосудов много в природе - капилляры кровеносной системы, пористых тел, почвы, растений и т. д.

Капиллярным явлением называется подъем или опускание жидкостей по узким трубкам. Такие процессы наблюдаются в естественных каналах человека, растений и других тел, а также в специальных узких сосудах из стекла. На картинке видно, что в сообщающихся трубках разной толщины установился разный уровень воды. Отмечено, что чем тоньше сосуд, тем выше уровень воды.

Эти явления лежат в основе впитывающих свойств полотенца, питания растений, движения чернил по стержню и многих других процессов.

Капиллярные явления в природе

Описанный выше процесс чрезвычайно важен для поддержания жизнедеятельности растений. Почва довольно рыхлая, между ее частицами существуют промежутки, которые представляют собой капиллярную сеть. По этим каналам поднимается вода, питая корневую систему растений влагой и всеми необходимыми веществами.

По этим же капиллярам жидкость активно испаряется, поэтому необходимо производить вспахивание земли, которое разрушит каналы и удержит питательные вещества. И наоборот, прижатая земля быстрее испарит влагу. Этим обусловлена важность перепашки земли для удержания подпочвенной жидкости.

В растениях капиллярная система обеспечивает подъем влаги от мелких корешков до самых верхних частей, а через листья она испаряется во внешнюю среду.

Поверхностное натяжение и смачивание

В основе вопроса о поведении жидкости в сосудах лежат такие физические процессы, как поверхностное натяжение и смачивание. Капиллярные явления, обусловленные ими, изучаются в комплексе.

Под действием силы поверхностного натяжения смачивающая жидкость в капиллярах находится выше уровня, на котором она должна находиться согласно закону сообщающихся сосудов. И наоборот, несмачивающая субстанция располагается ниже этого уровня.

Так, вода в стеклянной трубке (смачивающая жидкость) поднимается на тем большую высоту, чем тоньше сосуд. Напротив, ртуть в стеклянной пробирке (несмачивающая жидкость) опускается тем ниже, чем тоньше эта емкость. Кроме того, как указано на картинке, смачивающая жидкость образует вогнутую форму мениска, а несмачивающая - выпуклую.

Смачивание

Это явление, которое происходит на границе, где жидкость соприкасается с твердым телом (другой жидкостью, газами). Оно возникает по причине особого взаимодействия молекул на границе их контакта.

Полное смачивание означает, что капля растекается по поверхности твердого тела, а несмачивание преобразует ее в сферу. На практике чаще всего встречается та или иная степень смачивания, нежели крайние варианты.

Сила поверхностного натяжения

Поверхность капли имеет шарообразную форму и причина этому закон, действующий на жидкости, - поверхностное натяжение.

Капиллярные явления связаны с тем, что вогнутая сторона жидкости в трубке стремится выпрямиться до плоского состояния благодаря силам поверхностного натяжения. Это сопровождается тем, что наружные частицы увлекают за собой вверх тела, находящиеся под ними, и субстанция поднимается вверх по трубке. Однако жидкость в капилляре не может принимать плоскую форму поверхности, и этот процесс подъема продолжается до определенного момента равновесия. Чтобы рассчитать высоту, на которую поднимется (опустится) столб воды, нужно воспользоваться формулами, которые будут представлены ниже.

Расчет высоты подъема столба воды

Момент остановки подъема воды в узкой трубке наступает, когда сила тяжести Р тяж субстанции уравновесит силу поверхностного натяжения F. Этот момент определяет высоту подъема жидкости. Капиллярные явления обусловлены двумя разнонаправленными силами:

  • сила тяжести Р тяж заставляет жидкость опускаться вниз;
  • сила поверхностного натяжения F двигает воду вверх.

Сила поверхностного натяжения, действующая по окружности, где жидкость соприкасается со стенками трубки, равна:

где r - радиус трубки.

Сила тяжести, действующая на жидкость в трубке равна:

Р тяж = ρπr2hg,

где ρ - плотность жидкости; h - высота столба жидкости в трубке;

Итак, субстанция прекратит подниматься при условии, что Р тяж = F, а это значит, что

ρπr 2 hg = σ2πr,

отсюда высота жидкости в трубке равна:

Точно так же для несмачивающей жидкости:

h - это высота опускания субстанции в трубке. Как видно из формул, высота, на которую поднимется вода в узком сосуде (опустится) обратно пропорционально радиусу емкости и плотности жидкости. Это касается смачивающей жидкости и несмачивающей. При других условиях нужно делать поправку по форме мениска, что будет представлено в следующей главе.

Лапласовское давление

Как уже отмечалось, жидкость в узких трубках ведет себя так, что создается впечатление нарушения закона сообщающихся сосудов. Этот факт всегда сопровождает капиллярные явления. Физика объясняет это с помощью лапласовского давления, которое при смачивающей жидкости направлено вверх. Опуская очень узкую трубку в воду, наблюдаем, как жидкость втягивается на определенный уровень h. По закону сообщающихся сосудов, она должна была уравновеситься с внешним уровнем воды.

Это несоответствие объясняется направлением лапласовского давления p л:

В данном случае оно направлено вверх. Вода втягивается в трубку до уровня, где приходит уравновешивание с гидростатическим давлением p г столба воды:

а если p л =p г, то можно приравнять и две части уравнения:

Теперь высоту h легко вывести в виде формулы:

Когда смачивание полное, тогда мениск, который образует вогнутая поверхность воды, имеет форму полусферы, где Ɵ=0. В таком случае радиус сферы R будет равен внутреннему радиусу капилляра r. Отсюда получаем:

А в случае неполного смачивания, когда Ɵ≠0, радиус сферы можно вычислить по формуле:

Тогда искомая высота, имеющая поправку на угол, будет равна:

h=(2σ/pqr)cos Ɵ .

Из представленных уравнений видно, что высота h обратно пропорциональна внутреннему радиусу трубки r. Наибольшей высоты вода достигает в сосудах, имеющих диаметр человеческого волоса, которые и называются капиллярами. Как известно, смачивающая жидкость втягивается вверх, а несмачивающая - выталкивается вниз.

Можно провести эксперимент, взяв сообщающиеся сосуды, где один из них широкий, а другой - очень узкий. Налив туда воду, можно отметить разный уровень жидкости, причем в варианте со смачивающей субстанцией уровень в узкой трубке выше, а с несмачивающей - ниже.

Важность капиллярных явлений

Без капиллярных явлений существование живых организмов просто невозможно. Именно по мельчайшим сосудам человеческое тело получает кислород и питательные вещества. Корни растений - это сеть капилляров, которая вытягивает влагу из земли, донося ее до самых верхних листьев.

Простая бытовая уборка невозможна без капиллярных явлений, ведь по этому принципу ткань впитывает воду. Полотенце, чернила, фитиль в масляной лампе и множество устройств работает на этой основе. Капиллярные явления в технике играют важную роль при сушке пористых тел и других процессах.

Порой эти же явления дают нежелательные последствия, например, поры кирпича впитывают влагу. Чтобы избежать отсыревания зданий под воздействием грунтовых вод, нужно защитить фундамент с помощью гидроизолирующих материалов - битума, рубероида или толя.

Промокание одежды во время дождя, к примеру, брюк до самых колен от ходьбы по лужам также обязано капиллярным явлениям. Вокруг нас множество примеров этого природного феномена.

Эксперимент с цветами

Примеры капиллярных явлений можно найти в природе, особенно если говорить о растениях. Их стволы имеют внутри множество мелких сосудов. Можно провести эксперимент с окрашиванием цветка в какой-либо яркий цвет в результате капиллярных явлений.

Нужно взять ярко окрашенную воду и белый цветок (или лист пекинской капусты, стебель сельдерея) и поставить в стакан с этой жидкостью. Через какое-то время на листьях пекинской капусты можно наблюдать, как краска продвигается вверх. Цвет растения постепенно изменится соответственно краске, в которую он помещен. Это обусловлено движением субстанции вверх по стеблям согласно тем законам, которые были рассмотрены нами в этой статье.

 
Статьи по теме:
Картофельно-творожная запеканка
Запеканка из картофеля с творогом, рецепт которой мы решили вам предложить, вкусное простое блюдо. Вы легко сможете приготовить на сковороде. Начинка может быть любой, но мы решили приготовить творожную. Ингредиенты запеканки:- 4 средних картофелины, -
Что знак зодиака говорит о твоих оценках в школе?
Как вы уже догадались, речь пойдет о наших детях, главным образом о тех из них, которые учатся в начальных классах. Известно, что все дети с удовольствием идут в первый класс, и у всех у них присутствует нормальное желание учиться. Куда же оно девается че
Творожная запеканка как в детском саду: самый правильный рецепт
Творожная запеканка у многих ассоциируется с детским садиком – именно там часто подавали такой вкусный десерт. Это блюдо не только вкусно, но и полезно – в твороге есть кальций, который особенно необходим для детского организма. Вспомнить вкус детства или
My Favourite Subject — Мой любимый предмет Мои любимые уроки на английском языке
We study a lot of various and interesting subjects at school. Some of them are humanities, others - exact sciences. Human beings are not similar in their abilities, so we can be good at different things. I find Technical Drawing the most difficult school