Применение интерферометра майкельсона в астрономии. Принцип действия оптических интерферометров

Интерферометр Майкельсона

Анимация

Описание

Интерферометр Майкельсона является одной из наиболее распространенных скелетных схем интерферометра, предназначенной для различных применений в случае, когда пространственное совмещение объектов, порождающих интерферирующие волны, невозможно или в силу каких-то причин нежелательно.

Схематическое изображение конструкции интерферометра Майкельсона представлено на рис. 1.

Схематическое изображение конструкции интерферометра Майкельсона

Рис. 1

Пучок света от практически точечного источника S , находящегося в фокусе линзы, превращается этой линзой в параллельный пучок (часто в современных применениях этот пучок - просто лазерное излучение, не коллимированное дополнительной линзой). Далее этот пучок полупрозрачным плоским зеркалом SM делится на два, каждый из которых отражается назад зеркалами М 1,2 соответственно. Эти два отраженных пучка формируют на экране SC интерференционную картину, характер которой определяется соотношением форм волновых фронтов обоих пучков (см. рис. 2).

Волновые фронты пучков, образующих интерференционную картину

Рис. 2

Именно, эти два пучка в точке нахождения экрана могут иметь различные радиусы кривизны волновых фронтов R 1,2 , а также взаимный наклон последних a . В частности, легко сообразить, что оба указанных радиуса окажутся одинаковыми, а a =0 , тогда и только тогда, когда зеркала М 1,2 оба плоские (или вообще одинаковой формы), и положение зеркала М 1 в пространстве совпадает с зеркальным отражением М 2 в делителе SM , то есть М 2 " (см. рис. 1).

В таком случае на экране освещенность будет однородной, что и означает идеальную юстировку интерферометра.

В случае a№ 0 , R 1 =R 2 (расстояния от делителя до зеркал съюстированы правильно, но углы наклона - нет) на экране появится картина эквидистантных прямых интерференционных полос, как при интерференции отраженных от двух граней тонкого клина волн.

В случае a =0 , R 1 № R 2 (правильная угловая юстировка, но неправильные расстояния зеркал до делителя) интерференционная картина представляет собой концентрические кольца, обусловленные пересечением двух сферических волновых фронтов разной кривизны.

Наконец, в случае a =0 , R 1 =R 2 , но неидеальной плоскостности одного из зеркал - картина будет представлять собой неправильной формы “кольца Ньютона” вокруг неровностей соответствующей зеркальной поверхности.

Все указанные изменения наблюдаемой картины наступают при весьма малых (десятые доли длины волны по пространственному позиционированию и высоте неровностей зеркал, и десятки микрорадиан по угловой юстировке) отклонениях юстировочных параметров от идеала. Если учесть это, становится ясным, что интерферометр Майкельсона представляет собой весьма точное устройство для контроля позиционирования объекта в пространстве, его угловой юстировки и плоскостности. Специальные методы точного измерения распределения интенсивности в плоскости экрана позволяют повысить точность позиционирования до единиц нанометров.

Временные характеристики

Время инициации (log to от -8 до -5);

Время существования (log tc от -5 до 15);

Время деградации (log td от -8 до -5);

Время оптимального проявления (log tk от -5 до -4).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Техническая реализация осуществляется в полном соответствии с рис. 1 содержательной части. Лазерный пучок гелий-неонового лазера (для наглядности лучше его расширить телескопом до диаметра миллиметров 10-15) делится полупрозрачным зеркалом на два, отражается от двух плоских зеркал, и получается некая интерференционая картина на экране. Затем путем аккуратной юстировки длин плеч и углового положения зеркал добиваются исчезновения интерференционной картины в области перекрытия пучков на экране.

Применение эффекта

Применения интерферометра Майкельсона в технике весьма разнообразны. К примеру, он может быть использован для дистанционного контроля малых деформаций (отклонений от плоскостности) объекта (заменяющего собой одно из зеркал рис. 1). Такой подход весьма удобен когда по тем или иным причинам нежелательно близкое расположение объекта и эталонной поверхности (второго зеркала рис. 1). Например, объект сильно нагрет, химически агрессивен и тому подобное.

Но самое существенное техническое применение интерферометра Майкельсона состоит в использовании этой схемы в оптических гироскопах, основанных на эффекте Саньяка, для контроля сдвига интерференционной полосы, порожденного вращением.

Литература

1. Физика. Большой энциклопедический словарь.- М.: Большая Российская энциклопедия, 1999.

2. Сивухин Д.В. Общий курс физики. Оптика.- М.: Наука, 1985.

3. Ландсберг Г.С. Оптика.- М.: Наука, 1976.

Ключевые слова

  • интерференция
  • монохроматичность
  • разность хода лучей
  • показатель преломления
  • нулевая полоса интерференции

Разделы естественных наук:

Основой устройства интерферометра Майкельсона служит явление интерференции световой волны в тонких пленках. В рассматриваемом приборе это явление реализуется при помощи деления амплитуды волны света.

В составе интерферометра имеется плоскопараллельная пластина ($A$), которая покрыта серебром или алюминием. Эта пластина закреплена на постаменте под углом в $45{}^\circ $ к направлению лучей. Кроме этого имеются два плоских зеркала ($С\ и\ D$), расположенных перпендикулярно (рис.1).

Для компенсации разности хода лучей в приборе используется пластинка $B$. Волны света идут от источника $S$. Данные волны испытывают частичное отражение от пластины$\ A$, часть их них преодолевает данную пластину, таким образом, получают две когерентные световые волны. Волны, прошедшие сквозь пластину $A$, претерпевают отражение от зеркал $C\ и\ D$, и возвращаются к ней. Часть данных волн снова проходит через пластину $A,$ часть отражается от нее. Полученные волны способны интерферировать на отрезке $AK$. Интерференция получается в результате деления амплитуды на пластинке $A$. Картину интерференции наблюдают в зрительную трубу.

Повернем плечо $DA$ на угол $90{}^\circ $ (рис.1). В таком случае зеркало будет располагаться в положении, которое на рис.1 обозначено как $D"$. Между зеркалами $D"$ и $C$ возникает небольшой промежуток, который можно уподобить тонкой пленке. Если зеркала будут расположены строго нормально друг к другу, то в результате интерференции мы получим полосы равного наклона в виде концентрических колец. Для наблюдения картины интерференции в таком случае, зрительную трубу следует настраивать на бесконечность. Если угол между зеркалами не является точно равным $90{}^\circ $, то промежутком между ними будет клин. Результатом такой интерференции будут прямые полосы равной толщины. Для рассмотрения такой картины интерференции зрительную трубу направляют на грань пластинки $A,$ которая покрыта серебром.

Интерференция монохроматических волн в направлении оси интерферометра

Если световые волны идут четко по оси интерферометра, то оптическая разность их хода ($\Delta $) возникает как разница длин плечей ($p_1\ и\ p_2\ $) интерферометра:

\[\Delta =2\left(p_1-\ p_2\right)\left(1\right).\]

В таком случае разность хода составляет величину:

\[\delta =\frac{2\pi \Delta }{\lambda }\left(2\right).\]

Отметим, что в рассматриваемом случае мы не будем учитывать изменение фазы волны, которая возникает, когда она отражается от зеркал и преломляется в пластинке A, так как картина интерференции от этого не изменяется.

Допустим, что когда волна падает на пластину A, плотность потока ее энергии делится на две части. Зададим волны, которые идут по направлению к зрительной трубе при помощи равнений:

где $E_0$ - амплитуда падающей волны; $\delta ={\varphi }_2-{\varphi }_1$. Интенсивность полученной волны равна:

где $I_0=\frac{1}{2}{E_0}^2$ - интенсивность волны источника.

Следуя выражению (3) при:

\[\delta =\left(2m+1\right)\pi ,\ \left(m=0,\pm 1,\pm 2,\dots \right)\left(4\right),\] \

В том случае, если:

\[\delta =2m\pi ,\ \left(m=0,\pm 1,\pm 2,\dots \right)\left(6\right),\] \

При выполнении условия (6) вся энергия источника приходит к «экрану». Поток энергии, возвращающийся к источнику света, отсутствует.

Примеры задач с решением

Пример 1

Задание. Как можно применять интерферометр Майкельсона в оптических исследованиях?

Решение. Возможность перемещения зеркала интерферометра (например, зеркала D), способно изменят разность хода интерферирующих лучей. Это обуславливает все возможности применения данного интерферометра, как оптического прибора. С его помощью можно проводить измерение длин волн света. Следует учитывать, что перемещение зеркала проводится так, что его отражающая поверхность параллельна самой себе.

Интерферометром Майкельсона можно измерять изменения показателя преломления света. Путь в одно из равных плеч интерферометра введена дополнительная пластинка толщиной $d$ и показателем преломления $n"$, тогда между интерферирующими лучами появится разность хода:

\[\Delta =2d\left(n"-n\right)\left(1.1\right),\]

где $n=1$ - показатель преломления воздуха. Для восстановления картины интерференции в поле зрения трубы, следует увеличить другую длину плеча интерферометра на величину, равную:

\[\Delta p=\frac{\Delta }{2}=d\left(n"-1\right)\left(1.2\right).\]

Майкельсон использовал прибор для проверки связи направления распространения светового луча относительно Земли и скорости света.

При помощи интерферометра Майкельсона впервые провели систематическое исследование тонкой структуры спектральных линий и сравнили эталонный метр с длиной волны света. На настоящий момент интерферометр Майкельсона устарел как прибор для научных исследований.

Пример 2

Задание. На сколько следует сместить зеркало D параллельно самому себе (рис.2) для того, чтобы картина интерференции сместилась на $k$ полос? Длина световой волны равна $\lambda $. \textit{}

Решение. В качестве основы для решения задачи используем условие получения интерференционных максимумов

\[\Delta =m\lambda \ \left(m=0,\pm 1,\pm 2,\dots \right)\left(2.1\right).\]

С другой стороны мы знаем, что для интерферометра в первом положении зеркал:

\[{\Delta }_1=2\left(p_2-\ p_1\right)=m_1\lambda \left(2.2\right).\]

В состоянии интерферометра, когда одно зеркало сдвинули на расстояние $\Delta p$ (искомое расстояние):

\[{\Delta }_2=2\left(p_2+\Delta p-\ p_1\right)=m_2\lambda \left(2.3\right).\]

Найдем разность между уравнениями (2.2) и (2.3), имеем:

\[{\Delta }_2-{\Delta }_1=m_2\lambda -m_1\lambda =2\left(p_2+\Delta p-\ p_1\right)-2\left(p_2-\ p_1\right)\left(2.4\right).\]

По условию задачи:

преобразуя выражение (2.4), получим:

Ответ. $\Delta p=\frac{k\lambda }{2}$

Рассмотрим вначале подробнее одну схему, на которой очень отчетливо выступают все наиболее существенные детали интерференционной схемы.

Эта схема, известная под названием билинзы Бийе, осуществляется с помощью линзы, разрезанной по диаметру; обе половины слегка разводятся, благодаря чему получаются два действительных изображения S 1 и S 2 светящейся точки S . Прорезь между полулинзами закрывается экраном К (рис. 7.1).

Интерференция наблюдается в области, где перекрываются оба световых потока, идущих от S 1 и S 2 . Точка М интерференционного поля имеет освещенность, зависящую от разности хода двух интерферирующих лучей. На этой схеме ясно видно, что интерферирующие световые потоки задаются размерами телесных углов Ω, величина которых зависит от угла 2φ = между лучами, определяющими перекрывающиеся части пучков.

Этот угол 2φ мы назовем апертурой перекрывающихся пучков. Максимальное значение угла 2φ соответствует условию S 1 Q 1 || S 2 Q 2 и S 1 R 1 || S 2 R 2 ; при этом экран расположен в бесконечности. Обычно угол 2φ несколько меньше, ибо экран располагается на конечном расстоянии D , хотя и большом по сравнению с S 1 S 2 Величина апертуры 2φ определяет собой угловые размеры поля интерференции, средняя освещенность которого зависит от яркости и угловых размеров изображений источника S 1 и S 2 . Полный поток, проходящий через поле интерференции, пропорционален площади этого поля и, следовательно, углу 2φ . В интерференционном поле благодаря интерференции происходит перераспределение освещенности - образуются интерференционные полосы.

Угол 2ω между соответствующими лучами, идущими от S через каждую из двух ветвей интерферометра к М , представ ляет собой угол раскрытия лучей, определяющий интерференционный эффект в точке М . Практически то же значение имеет этот угол и для любой другой точки интерференционного поля. Этот угол мы будем называть апертурой интерференции. Ему соответствует в поле интерференции угол схождения лучей 2ω , величина которого связана с углом 2ω правилами построения изображений. При неизменном расстоянии до экрана 2ω тем больше, чем больше 2ω.

Существуют весьма многочисленные устройства, осуществляющие расположения, необходимые для получения интерференционных картин. Одним из приборов такого рода является интерферометр Майкельсона, сыгравший громадную роль в истории пауки.

Основная схема интерферометра Майкельсона изображена на рис. 7.2. Пучок от источника L . падает па пластинку P 1 , покрытую тонким слоем серебра или алюминия. Луч АВ , прошедший через пластинку P 2 отражается от зеркала S 1 , и, попадая опять па пластинку P 1 частично проходит через нее, а частично отражается по направлению АО . Луч AC отражается от зеркала S 2 , и, попадая па пластинку P 1 , частично проходит также по направлению АО . Так как обе волны 1 и 2 , распространяющиеся по направлению АО , представляют собой расчлененную волну, исходящую из источника L , то они когерентны между собой и могут интерферировать друг с другом. Так как луч 2 пересекает пластинку P 1 три раза, а луч 1 - один раз, то на его пути поставлена пластинка P 2 , идентичная Р 1 ; чтобы скомпенсировать добавочную разность хода, существенную при работе с белым светом.

Наблюдаемая интерференционная картина будет, очевидно, соответствовать интерференции в воздушном слое, образованном зеркалом S 2 и мнимым изображением S 1 " зеркала S 1 в пластинке Р 1 . Если S 1 , и S 2 расположены так, что упомянутый воздушный слой плоскопараллелен, то получающаяся интерференционная картина представится полосами равного наклона (круговыми кольцами), локализованными в бесконечности, и следовательно, наблюдение их возможно глазом, аккомодированным на бесконечность (или трубой, установленной на бесконечность, или на экране, расположенном в фокальной плоскости линзы).

Конечно, можно пользоваться и протяженным источником света. При малой толщине воздушного слоя в поле зрения зрительной трубы наблюдаются редкие интерференционные кольца большого диаметра. При большой толщине воздушного слоя, т. е. большой разности длин плеч интерферометра, наблюдаются частые интерференционные кольца малого диаметра уже около центра картины. Угловой диаметр колец в зависимости от разности длин плеч интерферометра и порядка интерференции определяется из соотношения 2d соsr = . Очевидно, что перемещение зеркала на четверть длины волны будет соответствовать при малых значениях угла r переходу в поле зрения светлого кольца на место темного, и наоборот, темного на место светлого.

Передвижение зеркала осуществляется при помощи микрометрического винта, перемещающего зеркало на специальных салазках. Так как в больших интерферометрах Майкельсона перемещение зеркала параллельно самому себе должно происходить на несколько десятков сантиметров, то понятно, что механические качества этого прибора должны быть исключительно высоки.

Для придания зеркалам правильного положения они снабжены установочными винтами. Нередко зеркала устанавливают таким образом, что эквивалентный воздушный слой имеет вид клина. В таком случае наблюдаются интерференционные полосы равной толщины, располагающиеся параллельно ребру воздушного клина.

При больших расстояниях между зеркалами разность хода между интерферирующими лучами может достигать огромных значений (свыше 10 6 λ), так что будут наблюдаться полосы миллионного порядка.

Понятно, что в этом случае необходимы источники света очень высокой степени монохроматичности.

В интерферометре Майкельсона используется явление интерференции в тонких пленках. Явление интерференции в данном приборе осуществляется способом деления амплитуды волны.

Что собой представляет это устройство? На массивном постаменте находится плоскопараллельная слегка покрытая серебром пластинка ($A$), расположенная под углом $45^0$ к направлению распространения лучей и два взаимно перпендикулярных плоских зеркала $C$ и $D$ (рис.1).

Рисунок 1.

Пластина B (рис.1) служит как вспомогательная, она компенсирует разность хода лучей. Световые волны распространяются от ($S$). Часть из них отражается от серебряной поверхности пластины $A$, часть проходит сквозь данную пластинку. Так происходит процесс расщепления волны света на две когерентные волны. Волны, которые проходят через пластинку отражаются от зеркал $C$ и $D$. Отраженные волны снова частично отражаются, частично проходят сквозь посеребрённую пластинку $A$. Эти волны могут интерферировать на участке $АК$. Эта интерференционная картина наблюдается в зрительную трубу. Так, на пластинке $А$ происходит деление амплитуды, фронт волн на ней сохраняется изменяется только направление его движения.

Если гипотетически плечо $DA$ развернуть на $90^0$, то зеркало $D$ попадет в положение $D"$. Между $D"$ и $С$ появляется промежуток, который может быть подобен тонкой пленке. В том случае, если зеркала $C$ и $D$ строго перпендикулярны, то наблюдаются полосы равного наклона, которые представляют собой круги. Зрительная труба в таком случае должна быть настроена на бесконечность. Если зеркала $C$ и $D$ не совсем перпендикулярные, то промежуток между нами уподобляется клину, то появляются полосы равной толщины в виде прямых полос. Зрительную трубу в этом случае фокусируют на посеребренную грань пластинки $А$.

Интерференция монохроматических волн, которые распространяются по оси интерферометра

В случае распространения волн строго по оси интерферометра оптическая разность хода лучей ($\triangle $) появляется за счет разницы в длинах плечей ($l_1\ и\ l_2\ \ $) интерферометра:

Появляющаяся при этом разность фаз равна:

При строгом расчете следует учесть изменение фаз волн при отражении от зеркал и преломления в пластинке $A$, здесь мы этого делать не будем, так как принципиального значения для картины интерференции это в нашем случае не имеет.

где $E_0$ -- амплитуда волны до попадания на пластинку $А$. $\delta ={\varphi }_2-{\varphi }_1$. Следовательно, для наблюдаемой в результате интенсивности получим:

где $I_0=\frac{1}{2}{E_0}^2$ -- интенсивность входящей от источника света волны.

В том случае, если:

интенсивность (3) равна нулю. Если:

интенсивность равна $I_0$, что означает: вся энергия от источника попадает на «экран», потока энергии, которая возвращается в направлении источника света, нет.

Замечание

Интерферометр Майкельсона применяют для измерения маленьких расстояний, малых изменений показателей преломления. Сам Майкельсон применял свой интерферометр для опыта, по проверке связи скорости света с направлением движения луча по отношению к Земле.

Пример 1

Задание: Для того чтобы вычислить показатель преломления аммиака в одно плечо интерферометра Майкельсона помещается стеклянная трубка внутри которой находится вакуум. Ее длина $l=15\ см=15\cdot 10^{-2}м$. В случае заполнения данной трубки аммиаком интерференционная картина для длины волны равной $\lambda =589\ нм=589\cdot {10}^{-9}м$ смещается на $192$ полосы. Чему равен показатель преломления аммиака?

Решение:

Разность оптического хода волны ($\triangle $) в вакууме и аммиаке можно найти как:

\[\triangle =ln-ln_v\left(1.1\right),\]

где $n_v$=1 показатель преломления для вакуума. Запишем условие интерференционных минимумов:

\[\triangle =m\frac{\lambda }{2}\ \left(m=0,\pm 1,\pm 2,\dots \right)\left(1.2\right).\]

Приравняем правые части выражений (1.1) и (1.2), получим:

Выразим из (1.3) показатель преломления:

Проведем вычисления:

Ответ: $n=1,000377.$

Пример 2

Задание: В интерферометре Майкельсона при поступательном движении одного из зеркал интерференционная картина то исчезает, то появляется. Каково перемещение ($\triangle l$) зеркала между двумя последовательными появлениями четкой интерференционной картины, если использовать волны ${\lambda }_1$ и ${\lambda }_2$?

Решение:

Причиной исчезновения интерференционной картины можно считать то, что максимумы и минимумы интерференционной картины волн разной длины сдвинуты относительно друг друга. При достаточной разнице в длине волны максимумы в интерференции одной волны могут попадать на минимумы другой, тогда интерференционная картина полностью исчезает.

Запишем условие перехода от одной четкой картины к другой:

\[\left(z+1\right){\lambda }_1=z{\lambda }_2\left(2.1\right),\]

где $z$ -- целое число. Искомое перемещение зеркала ($\triangle l$) можно определить как:

Используя систему уравнений (2.1) и (2.2) выразим $\triangle l$:

\[\left(z{\lambda }_1+{\lambda }_1\right)=z{\lambda }_2\to z{(\lambda }_2-{\lambda }_1)={\lambda }_1\to z=\frac{{\lambda }_1}{{(\lambda }_2-{\lambda }_1)},\] \[\triangle l=\frac{{\lambda }_1{\lambda }_2}{2{(\lambda }_2-{\lambda }_1)}.\]

Ответ: $\triangle l=\frac{{\lambda }_1{\lambda }_2}{2{(\lambda }_2-{\lambda }_1)}.$

Оптические интерферометры применяются для изменения оптических длин волн, спектральных линий, показателя преломления поляризационных сред, абсолютных и относительных длин объектов, угловых размеров звезд для контроля качества оптических деталей и их поверхности.

Принцип действия:

Пучок света с помощью различных устройств разделяется на 2 или более когерентных пучков, которые проходят различные оптические пути, затем сводятся вместе и наблюдается результат их интерференции.

Вид интерференционной картины зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, оптической разности хода, относительной интенсивности, размеров источника, спектрального состава света.

По числу интерферометры пучков оптические интерферометры можно разделить:

Двухлучевые и многолучевые.

Многолучевые интерферометры используются как спектральные приборы, для исследования спектрального состава света.

Двухлучевые можно использовать для измерения физических технических измерений.

Майкельсона : Параллельный пучок света от источника, проходя через О1 попадает на полупрозрачную пластинку P1 и разделяет на два когерентных пучка.

Далее пучок 1 отражается от зеркала M1, 2 пучок – М2. Луч 2 повторно проходит через пластинку P1, 1 не проходит. Оба пучка проходят в направлении AO через объектив О2 и интерферирует в фокальной плоскости диафрагмы D. Наблюдаемая интерференционная картина соответствует интерференции в воздушном слое, образованным зеркалом М2 и мнимым изображением зеркала М1 в пластине P1.

Толщина воздушного слоя l (оптическая разность хода = 2l).

Если зеркало М1 расположено так, что М2 и мнимое изображение М1 параллельны, то интерференционная картина представляет собой полосы равного наклона, локализованные в фокальной плоскости объектива О2. А картина представляет собой концентрические кольца.

Полосы равного наклона образуются при освещении прозрачного слоя постоянной толщины непараллельным пучком монохроматического излучения.

Если М2 и изображение М1 образуют воздушный клин, то возникают полосы равной толщины и представляют собой параллельные линии.

Интерферометр Жамена:

Предназначен для измерения показателей преломления в газах и жидкостях.

Пучок монохроматического света S после отражения передней и задней поверхности стеклянной пластинки P1 разделяется на 2 пучка S1 и S2.

На пути пучков стоят 2 кюветы К1 и К2, через них пучки отражаются от Р2.

Р2 повернуто относительно Р1 . и попадают в зрительную трубу Т, где интерферируют образуя прямы полосы равного наклона.

Если одну из кювет заполнить веществом с показателем преломления n1, а вторую n2, то по смещению интерференционной картины на число полос m по сравнению с тем случаем когда 2 обе кюветы заполнены (или нет) можно определить n1 и n2,которые связывают Δn.

Относительная погрешность измерения коэффициента преломления достигает 10 -8 .

Фабри-Перо :

В его состав входят две параллельные пластины Р1 и Р2, на обращенные друг к другу поверхности пластинок нанесены зеркальные покрытия с коэффициентом отражения от 0.85 до 0.98.

Параллельный пучок света Sпадающей из объектива О1 в результате многократного отражения от зеркал обретает большое число параллельных когерентных пучков с постоянной разностью хода между соседними пучками.

h- Расстояние между зеркалами

θ- угол отражения пучков от зеркал

Интенсивность этих пучков будет различна. В результате многолучевой интерференции в фокальной плоскости l объектива О2 образуется интерференционная картина, которая имеет форму концентрических колец.

Положение максимальной интерференции определяется:

m – целое число

Интерферометр Фабри-Перо применяется в качестве прибора высокой разрешающей способности.

Разрешающая способность зависит от коэффициента отражения зеркал, от расстояния между зеркалами и возрастает с их увеличением.

Минимальный разрешающий интервал длин волн 5*10 -5 нм.

Специальные способности интерферометра фабри-перо используются для исследования спектров в ИК, видимом и и сантиметровой частях диапазона длин волн.

Разностью интерферометра ФП является оптический резонатор лазеров, излучающая среда которых располагается между зеркалами.

Если допустить, что между зеркалами нормально к ним располагается ЭМ плоская волна, то в результате отражения ее от зеркал образуется стоячие волны, возникает резонанс.

h – целое число полуволн, m- продольный индекс колебаний или продольная мода.

Собственные частоты оптического резонатора образуют арифметическую прогрессию, которая равна – c/2*h (шаг)

Разность частот между двумя соседними продольными модами в излучении лазера зависит от расстояния между зеркалами резонатора:

Перемещение одного из зеркал на Δf приводит к изменению разностной частоты:

Δf=с* Δh/2h 2 .

Оно может быть измерено с помощью фотоприемника.


 
Статьи по теме:
My Favourite Subject — Мой любимый предмет Мои любимые уроки на английском языке
We study a lot of various and interesting subjects at school. Some of them are humanities, others - exact sciences. Human beings are not similar in their abilities, so we can be good at different things. I find Technical Drawing the most difficult school
Леру, пьер Отрывок, характеризующий Леру, Пьер
, Франция Дата смерти: Ошибка Lua в Модуль:Infocards на строке 164: attempt to perform arithmetic on local "unixDateOfDeath" (a nil value). Место смерти: Страна: Учёная степень: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field
Икона Божией Матери “Умиление” Псково-Печерская Богоматерь свенская
Икона Божией Матери Печерская-Свенская Икона Божией Матери Печерская-Свенская. Молитвы. Икона Божией Матери Печерская-Свенская имеет два празднования: в день кончины преподобного Феодосия Печерского — 3 мая, а так же в день кончины преподобного Алипия Пе
Приготовим соус из яблок на зиму - к любому блюду!
Во многих странах соус считается залогом вкусовых качеств любого блюда. Он способен преобразить даже отварные овощи. Хозяйки привыкли к однообразию кухни: жареные стейки поливать обычным кетчупом, а к блинам и оладьям подавать сгущенное молоко или же обыч