Окислительно – восстановительные реакции. Окислительно-восстановительные реакции

По этому признаку различают окислительно-восстановительные реакции и реакции, протекающие без изменения степеней окисления химических элементов.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:


Как вы помните, коэффициенты в сложных окислительно-восстановительных реакциях расставляют, используя метод электронного баланса:

В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.

1. Они восстанавливаются в соответствующие спирты:

2. Альдегиды окисляются в соответствующие кислоты:


Сущность всех приведенных выше примеров окислительно-восстановительных реакций была представлена с помощью хорошо известного вам метода электронного баланса. Он основан на сравнении степеней окисления атомов в реагентах и продуктах реакции и на балансировании числа электронов в процессах окисления и восстановления. Этот метод применяют для составления уравнений реакций, протекающих в любых фазах. Этим он универсален и удобен. Но в то же время он имеет серьезный недостаток - при выражении сущности окислительно-восстановительных реакций, протекающих в растворах, указываются частицы, которые реально не существуют.

В этом случае удобнее использовать другой метод - метод полуреакций. Он основан на составлении ионноэлектронных уравнений для процессов окисления и восстановления с учетом реально существующих частиц и последующем суммировании их в общее уравнение. В этом методе не используют понятие «степень окисления», а продукты определяются при выводе уравнения реакции.

Продемонстрируем этот метод на примере: составим уравнение окислительно-восстановительной реакции цинка с концентрированной азотной кислотой.

1. Записываем ионную схему процесса, которая включает только восстановитель и продукт его окисления, окислитель и продукт его восстановления:

2. Составляем ионно-электронное уравнение процесса окисления (это 1-я полуреакция):

3. Составляем ионно-электронное уравнение процесса восстановления (это 2-я полуреакция):

Обратите внимание: электронно-ионные уравнения составляются в соответствии с законом сохранения массы и заряда.

4. Записываем уравнения полуреакций так, чтобы число электронов между восстановителем и окислителем было сбалансированно:

5. Суммируем почленно уравнения полуреакций. Составляем общее ионное уравнение реакции:

Проверяем правильность составления уравнения реакции в ионном виде:

  • Соблюдение равенства по числу атомов элементов и по числу зарядов
    1. Число атомов элементов должно быть равно в левой и правой частях ионного уравнения реакции.
    2. Общий заряд частиц в левой и правой частях ионного уравнения должен быть одинаков.

6. Записываем уравнение в молекулярной форме. Для этого добавляем к ионам, входящим в ионное уравнение, необходимое число ионов противоположного заряда:

Реакции, идущие без изменения степеней окисления химических элементов . К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, например:

многие реакции разложения:

реакции этерификации:

7.1. Основные типы химических реакций

Превращения веществ, сопровождающиеся изменением их состава и свойств, называются химическими реакциями или химическими взаимодействиями. При химических реакциях не происходит изменения состава ядер атомов.

Явления, при которых изменяется форма или физическое состояние веществ или изменяется состав ядер атомов, называются физическими. Примером физических явлений является термическая обработка металлов, при которой происходит изменение их формы (ковка), плавление металла, возгонка иода, превращение воды в лед или пар и т.д., а также ядерные реакции, в результате которых из атомов одних элементов образуются атомы других элементов.

Химические явления могут сопровождаются физическими превращениями. Например, в результате протекания химических реакций в гальваническом элементе возникает электрический ток.

Химические реакции классифицируют по различным признакам.

1. По знаку теплового эффекта все реакции делятся на эндотермические (протекающие с поглощением теплоты) и экзотермические (протекающие с выделением теплоты) (см. § 6.1).

2. По агрегатному состоянию исходных веществ и продуктов реакции различают:

    гомогенные реакции , в которых все вещества находятся в одной фазе:

    2 KOH (p-p) + H 2 SO 4(p-p) = K 2 SO (p-p) + 2 H 2 O (ж) ,

    CO (г) + Cl 2(г) = COCl 2(г) ,

    SiO 2(к) + 2 Mg (к) = Si (к) + 2 MgO (к) .

    гетерогенные реакции , вещества в которых находятся в различных фазах:

СаО (к) + СО 2(г) = СаCO 3(к) ,

CuSO 4(р-р) + 2 NaOH (р-р) = Cu(OH) 2(к) + Na 2 SO 4(р-р) ,

Na 2 SO 3(р-р) + 2HCl (р-р) = 2 NaCl (р-р) + SO 2(г) + H 2 O (ж) .

3. По способности протекать только в прямом направлении, а также в прямом и обратном направлении различают необратимые и обратимые химические реакции (см. § 6.5).

4. По наличию или отсутствую катализаторов различают каталитические и некаталитические реакции (см. § 6.5).

5. По механизму протекания химические реакции делятся на ионные , радикальные и др. (механизм химических реакций, протекающих с участием органических соединений, рассматривается в курсе органической химии).

6. По состоянию степеней окисления атомов, входящих в состав реагирующих веществ различают реакции, протекающие без изменения степени окисления атомов, и с изменением степени окисления атомов (окислительно–восстановительные реакции ) (см. § 7.2) .

7. По изменению состава исходных веществ и продуктов реакции различают реакции соединения, разложения, замещения и обмена . Эти реакции могут протекать как с изменением, так и без изменения степеней окисления элементов, табл . 7.1.

Таблица 7.1

Типы химических реакций

Общая схема

Примеры реакций, протекающих без изменения степени окисления элементов

Примеры окислительно-восстановительных реакций

Соединения

(из двух или нескольких веществ образуется одно новое вещество)

HCl + NH 3 = NH 4 Cl;

SO 3 + H 2 O = H 2 SO 4

H 2 + Cl 2 = 2HCl;

2Fe + 3Cl 2 = 2FeCl 3

Разложения

(из одного вещества образуется несколько новых веществ)

А = В + С + D

MgCO 3 MgO + CO 2 ;

H 2 SiO 3 SiO 2 + H 2 O

2AgNO 3 2Ag + 2NO 2 + O 2

Замещения

(при взаимодействии веществ атомы одного вещества замещают в молекуле атомы другого вещества)

А + ВС = АВ + С

CaCO 3 + SiO 2 CaSiO 3 + CO 2

Pb(NO 3) 2 + Zn =
Zn(NO 3) 2 + Pb;

Mg + 2HCl = MgCl 2 + H 2

(два вещества обмениваются своими составными частями, образуя два новых вещества)

АВ + СD = AD + CВ

AlCl 3 + 3NaOH =
Al(OH) 3 + 3NaCl;

Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O

7.2. Окислительно–восстановительные реакции

Как указывалось выше, все химические реакции подразделяются на две группы:

Химические реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно–восстановительными.

Окисление – это процесс отдачи электронов атомом, молекулой или ионом:

Na o – 1e = Na + ;

Fe 2+ – e = Fe 3+ ;

H 2 o – 2e = 2H + ;

2 Br – – 2e = Br 2 o .

Восстановление – это процесс присоединения электронов атомом, молекулой или ионом:

S o + 2e = S 2– ;

Cr 3+ + e = Cr 2+ ;

Cl 2 o + 2e = 2Cl – ;

Mn 7+ + 5e =Mn 2+ .

Атомы, молекулы или ионы, принимающие электроны, называются окислителями . Восстановителями являются атомы, молекулы или ионы, отдающие электроны.

Принимая электроны окислитель в процессе протекания реакции восстанавливается, а восстановитель – окисляется. Окисление всегда сопровождается восстановлением и наоборот. Таким образом, число электронов, отдаваемых восстановителем, всегда равно числу электронов, принимаемых окислителем .

7.2.1. Степень окисления

Степень окисления – это условный (формальный) заряд атома в соединении, рассчитанный в предположении, что оно состоит только из ионов. Степень окисления принято обозначать арабской цифрой сверху символа элемента со знаком “+” или “–” . Например, Al 3+ , S 2– .

Для нахождения степеней окисления руководствуются следующими правилами:

    степень окисления атомов в простых веществах равна нулю;

    алгебраическая сумма степеней окисления атомов в молекуле равна нулю, в сложном ионе – заряду иона;

    степень окисления атомов щелочных металлов всегда равна +1;

    атом водорода в соединениях с неметаллами (CH 4 , NH 3 и т.д) проявляет степень окисления +1, а с активными металлами его степень окисления равна –1 (NaH, CaH 2 и др.);

    атом фтора в соединениях всегда проявляет степень окисления –1;

    степень окисления атома кислорода в соединениях обычно равна –2, кроме пероксидов (H 2 O 2 , Na 2 O 2), в которых степень окисления кислорода –1, и некоторых других веществ (надпероксидов, озонидов, фторидов кислорода).

Максимальная положительная степень окисления элементов в группе обычно равна номеру группы. Исключением являются фтор, кислород, поскольку их высшая степень окисления ниже номера группы, в которой они находятся. Элементы подгруппы меди образуют соединения, в которых их степень окисления превышает номер группы (CuO, AgF 5 , AuCl 3).

Максимальная отрицательная степень окисления элементов, находящихся в главных подгруппах периодической системы может быть определена вычитанием из восьми номера группы. Для углерода это 8 – 4 = 4, для фосфора – 8 – 5 = 3.

В главных подгруппах при переходе от элементов сверху вниз устойчивость высшей положительной степени окисления уменьшается, в побочных подгруппах, наоборот, сверху вниз увеличивается устойчивость более высоких степеней окисления.

Условность понятия степени окисления можно продемонстрировать на примере некоторых неорганических и органических соединений. В частности, в фосфиновой (фосфорноватистой) Н 3 РО 2 , фосфоновой (фосфористой) Н 3 РО 3 и фосфорной Н 3 РО 4 кислотах степени окисления фосфора соответственно равны +1, +3 и +5, в то время как во всех этих соединениях фосфор пятивалентен. Для углерода в метане СН 4 , метаноле СН 3 ОН, формальдегиде СН 2 O , муравьиной кислоте НСООН и оксиде углерода (IV) СO 2 степени окисления углерода составляют соответственно –4, –2, 0, +2 и +4, в то время как валентность атома углерода во всех этих соединениях равна четырем.

Несмотря на то, что степень окисления является условным понятием, она широко используется при составлении окислительно–восстановительных реакций.

7.2.2. Важнейшие окислители и восстановители

Типичными окислителями являются:

1. Простые вещества, атомы которых обладают большой электроотрицательностью. Это, в первую очередь, элементы главных подгрупп VI и VII групп периодической системы: кислород, галогены. Из простых веществ самый сильный окислитель – фтор.

2. Соединения, содержащие некоторые катионы металлов в высоких степенях окисления: Pb 4+ , Fe 3+ , Au 3+ и др.

3. Соединения, содержащие некоторые сложные анионы, элементы в которых находятся в высоких положительных степенях окисления: 2– , – – и др.

К восстановителям относят:

1. Простые вещества, атомы которых обладают низкой электроотрицательностью – активные металлы. Восстановительные свойства могут проявлять и неметаллы, например, водород и углерод.

2. Некоторые соединения металлов, содержащие катионы (Sn 2+ , Fe 2+ , Cr 2+), которые, отдавая электроны, могут повышать свою степень окисления.

3. Некоторые соединения, содержащие такие простые ионы как, например I – , S 2– .

4. Соединения, содержащие сложные ионы (S 4+ O 3) 2– , (НР 3+ O 3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

В лабораторной практике наиболее часто используются следующие окислители:

    перманганат калия (KMnO 4);

    дихромат калия (K 2 Cr 2 O 7);

    азотная кислота (HNO 3);

    концентрированная серная кислота (H 2 SO 4);

    пероксид водорода (H 2 O 2);

    оксиды марганца (IV) и свинца (IV) (MnO 2 , PbO 2);

    расплавленный нитрат калия (KNO 3) и расплавы некоторых других нитратов.

К восстановителям, которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al) и другие активные металлы;
  • водород (Н 2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na 2 S) и сероводород (H 2 S);
  • сульфит натрия (Na 2 SO 3);
  • хлорид олова (SnCl 2).

7.2.3. Классификация окислительно–восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на три типа: межмолекулярные, внутримолекулярные и реакции диспропорционирования (самоокисления-самовосстановления).

Межмолекулярные реакции протекают с изменением степени окисления атомов, которые находятся в различных молекулах. Например:

2 Al + Fe 2 O 3 Al 2 O 3 + 2 Fe,

C + 4 HNO 3(конц) = CO 2 + 4 NO 2 + 2 H 2 O.

К внутримолекулярным реакциям относятся такие реакции, в которых окислитель и восстановитель входят в состав одной и той же молекулы, например:

(NH 4) 2 Cr 2 O 7 N 2 + Cr 2 O 3 + 4 H 2 O,

2 KNO 3 2 KNO 2 + O 2 .

В реакциях диспропорционирования (самоокисления-самовосстановления) атом (ион) одного и того же элемента является и окислителем, и восстановителем:

Cl 2 + 2 KOH KCl + KClO + H 2 O,

2 NO 2 + 2 NaOH = NaNO 2 + NaNO 3 + H 2 O.

7.2.4. Основные правила составления окислительно-восстановительных реакций

Составление окислительно-восстановительных реакций осуществляют согласно этапам, представленным в табл. 7.2.

Таблица 7.2

Этапы составления уравнений окислительно-восстановительных реакций

Действие

Определить окислитель и восстановитель.

Установить продукты окислительно-восстановительной реакции.

Составить баланс электронов и с его помощью расставить коэффициенты у веществ, изменяющих свои степени окисления.

Расставить коэффициенты у других веществ, принимающих участие и образующихся в окислительно-восстановительной реакции.

Проверить правильность расстановки коэффициентов путем подсчета количества вещества атомов (как правило, водорода и кислорода), находящихся в левой и правой частях уравнения реакции.

Правила составления окислительно-восстановительных реакций рассмотрим на примере взаимодействия сульфита калия с перманганатом калия в кислой среде:

1. Определение окислителя и восстановителя

Находящийся в высшей степени окисления марганец не может отдавать электроны. Mn 7+ будет принимать электроны, т.е. является окислителем.

Ион S 4+ может отдать два электрона и перейти в S 6+ , т.е. является восстановителем. Таким образом, в рассматриваемой реакции K 2 SO 3 – восстановитель, а KMnO 4 – окислитель.

2. Установление продуктов реакции

K 2 SO 3 + KMnO 4 + H 2 SO 4 ?

Отдавая два электрона электрон, S 4+ переходит в S 6+ . Сульфит калия (K 2 SO 3), таким образом, переходит в сульфат (K 2 SO 4). В кислой среде Mn 7+ принимает 5 электронов и в растворе серной кислоты (среда) образует сульфат марганца (MnSO 4). В результате данной реакции образуются также дополнительные молекулы сульфата калия (за счет ионов калия, входящих в состав перманганата), а также молекулы воды. Таким образом рассматриваемая реакция запишется в виде:

K 2 SO 3 + KMnO 4 + H 2 SO 4 = K 2 SO 4 + MnSO 4 + H 2 O.

3. Составление баланса электронов

Для составления баланса электронов необходимо указать те степени окисления, которые изменяются в рассматриваемой реакции:

K 2 S 4+ O 3 + KMn 7+ O 4 + H 2 SO 4 = K 2 S 6+ O 4 + Mn 2+ SO 4 + H 2 O.

Mn 7+ + 5 е = Mn 2+ ;

S 4+ – 2 е = S 6+ .

Число электронов, отдаваемых восстановителем должно равняться числу электронов, принимаемых окислителем. Поэтому в реакции должно участвовать два Mn 7+ и пять S 4+ :

Mn 7+ + 5 е = Mn 2+ 2,

S 4+ – 2 е = S 6+ 5.

Таким образом, число электронов, отдаваемых восстановителем (10) будет равно числу электронов, принимаемых окислителем (10).

4. Расстановка коэффициентов в уравнении реакции

В соответствии с балансом электронов перед K 2 SO 3 необходимо поставить коэффициент 5, а перед KMnO 4 – 2. В правой части перед сульфатом калия ставим коэффициент 6, поскольку к пяти молекулам K 2 SO 4 , образующимся при окислении сульфита калия, добавляется одна молекула K 2 SO 4 в результате связывания ионов калия, входящих в состав перманганата. Поскольку в качестве окислителя в реакции участвуют две молекулы перманганата, в правой части образуются также две молекулы сульфата марганца. Для связывания продуктов реакции (ионов калия и марганца, входящих в состав перманганата) необходимо три молекулы серной кислоты, поэтому в результате реакции образуется три молекулы воды. Окончательно получаем:

5 K 2 SO 3 + 2 KMnO 4 + 3 H 2 SO 4 = 6 K 2 SO 4 + 2 MnSO 4 + 3 H 2 O.

5. Проверка правильности расстановки коэффициентов в уравнении реакции

Число атомов кислорода в левой части уравнения реакции равно:

5 · 3 + 2 · 4 + 3 · 4 = 35.

В правой части это число составит:

6 · 4 + 2 · 4 + 3 · 1 = 35.

Число атомов водорода в левой части уравнения реакции равно шести и соответствует числу этих атомов в правой части уравнения реакции.

7.2.5. Примеры окислительно–восстановительных реакций с участием типичных окислителей и восстановителей

7.2.5.1. Межмолекулярные реакции окисления-восстановления

Ниже в качестве примеров рассматриваются окислительно-восстановительные реакции, протекающие с участием перманганата калия, дихромата калия, пероксида водорода, нитрита калия, иодида калия и сульфида калия. Окислительно-восстановительные реакции с участием других типичных окислителей и восстановителей рассматриваются во второй части пособия (“Неорганическая химия”).

Окислительно-восстановительные реакции с участием перманганата калия

В зависимости от среды (кислая, нейтральная, щелочная) перманганат калия, выступая в качестве окислителя, дает различные продукты восстановления, рис. 7.1.

Рис. 7.1. Образование продуктов восстановления перманганата калия в различных средах

Ниже приведены реакции KMnO 4 с сульфидом калия в качестве восстановителя в различных средах, иллюстрирующие схему, рис. 7.1. В этих реакциях продуктом окисления сульфид-иона является свободная сера. В щелочной среде молекулы КОН не принимают участие в реакции, а лишь определяют продукт восстановления перманганата калия.

5 K 2 S + 2 KMnO 4 + 8 H 2 SO 4 = 5 S + 2 MnSO 4 + 6 K 2 SO 4 + 8 H 2 O,

3 K 2 S + 2 KMnO 4 + 4 H 2 O 2 MnO 2 + 3 S + 8 KOH,

K 2 S + 2 KMnO 4 (KOH) 2 K 2 MnO 4 + S.

Окислительно-восстановительные реакции с участием дихромата калия

В кислой среде дихромат калия является сильным окислителем. Смесь K 2 Cr 2 O 7 и концентрированной H 2 SO 4 (хромпик) широко используется в лабораторной практике в качестве окислителя. Взаимодействуя с восстановителем одна молекула дихромата калия принимает шесть электронов, образуя соединения трехвалентного хрома:

6 FeSO 4 +K 2 Cr 2 O 7 +7 H 2 SO 4 = 3 Fe 2 (SO 4) 3 +Cr 2 (SO 4) 3 +K 2 SO 4 +7 H 2 O;

6 KI + K 2 Cr 2 O 7 + 7 H 2 SO 4 = 3 I 2 + Cr 2 (SO 4) 3 + 4 K 2 SO 4 + 7 H 2 O.

Окислительно-восстановительные реакции с участием пероксида водорода и нитрита калия

Пероксид водорода и нитрит калия проявляют преимущественно окислительные свойства:

H 2 S + H 2 O 2 = S + 2 H 2 O,

2 KI + 2 KNO 2 + 2 H 2 SO 4 = I 2 + 2 K 2 SO 4 + H 2 O,

Однако, при взаимодействии с сильными окислителями (такими как, например, KMnO 4), пероксид водорода и нитрит калия выступают в качестве восстановитеей:

5 H 2 O 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 O 2 + 2 MnSO 4 + K 2 SO 4 + 8 H 2 O,

5 KNO 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 KNO 3 + 2 MnSO 4 + K 2 SO 4 + 3 H 2 O.

Необходимо отметить, что пероксид водорода в зависимости от среды восстанавливается согласно схеме, рис. 7.2.

Рис. 7.2. Возможные продукты восстановления пероксида водорода

При этом в результате реакций образуется вода или гидроксид-ионы:

2 FeSO 4 + H 2 O 2 + H 2 SO 4 = Fe 2 (SO 4) 3 + 2 H 2 O,

2 KI + H 2 O 2 = I 2 + 2 KOH.

7.2.5.2 . Внутримолекулярные реакции окисления-восстановления

Внутримолекулярные окислительно-восстановительные реакции протекают, как правило, при нагревании веществ, в молекулах которых присутствуют восстановитель и окислитель. Примерами внутримолекулярных реакций восстановления-окисления являются процессы термического разложения нитратов и перманганата калия:

2 NaNO 3 2 NaNO 2 + O 2 ,

2 Cu(NO 3) 2 2 CuO + 4 NO 2 + O 2 ,

Hg(NO 3) 2 Hg + NO 2 + O 2 ,

2 KMnO 4 K 2 MnO 4 + MnO 2 + O 2 .

7.2.5.3 . Реакции диспропорционирования

Как выше отмечалось, в реакциях диспропорционирования один и тот же атом (ион) является одновременно окислителем и восстановителем. Рассмотрим процесс составления этого типа реакций на примере взаимодействия серы со щелочью.

Характерные степени окисления серы: 2, 0, +4 и +6. Выступая в качестве восстановителя элементарная сера отдает 4 электрона:

S o 4е = S 4+ .

Сера окислитель принимает два электрона:

S o + 2е = S 2– .

Таким образом, в результате реакции диспропорционирования серы образуются соединения, степени окисления элемента в которых 2 и справа +4:

3 S + 6 KOH = 2 K 2 S + K 2 SO 3 + 3 H 2 O.

При диспропорционировании оксида азота (IV) в щелочи получаются нитрит и нитрат – соединения, в которых степени окисления азота соответственно равны +3 и +5:

2 N 4+ O 2 + 2 КOH = КN 3+ O 2 + КN 5+ O 3 + H 2 O,

Диспропорционирование хлора в холодном растворе щелочи приводит к образованию гипохлорита, а в горячем – хлората:

Cl 0 2 + 2 KOH = KCl – + KCl + O + H 2 O,

Cl 0 2 + 6 KOH 5 KCl – + KCl 5+ O 3 + 3H 2 O.

7.3. Электролиз

Окислительно–восстановительный процесс, протекающий в растворах или расплавах при пропускании через них постоянного электрического тока, называют электролизом. При этом на положительном электроде (аноде) происходит окисление анионов. На отрицательном электроде (катоде) восстанавливаются катионы.

2 Na 2 CO 3 4 Na + О 2 + 2CO 2 .

При электролизе водных растворов электролитов наряду с превращениями растворенного вещества могут протекать электрохимические процессы с участием ионов водорода и гидроксид-ионов воды:

катод (–): 2 Н + + 2е = Н 2 ,

анод (+): 4 ОН – – 4е = О 2 + 2 Н 2 О.

В этом случае восстановительный процесс на катоде происходит следующим образом:

1. Катионы активных металлов (до Al 3+ включительно) не восстанавливаются на катоде, вместо них восстанавливается водород.

2. Катионы металлов, расположенные в ряду стандартных электродных потенциалов (в ряду напряжений) правее водорода, при электролизе восстанавливаются на катоде до свободных металлов.

3. Катионы металлов, расположенные между Al 3+ и Н + , на катоде восстанавливаются одновременно с катионом водорода.

Процессы, протекающие в водных растворах на аноде, зависят от вещества, из которого сделан анод. Различают аноды нерастворимые (инертные ) и растворимые (активные ). В качестве материала инертных анодов используют графит или платину. Растворимые аноды изготавливают из меди, цинка и других металлов.

При электролизе растворов с инертным анодом могут образовываться следующие продукты:

1. При окислении галогенид-ионов выделяются свободные галогены.

2. При электролизе растворов, содержащих анионы SO 2 2– , NO 3 – , PO 4 3– выделяется кислород, т.е. на аноде окисляются не эти ионы, а молекулы воды.

Учитывая вышеизложенные правила, рассмотрим в качестве примера электролиз водных растворов NaCl, CuSO 4 и KOH с инертными электродами.

1). В растворе хлорид натрия диссоциирует на ионы.

Установите соответствие между уравнением реакции и свойством элемента азота, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 4221

Пояснение:

А) NH 4 HCO 3 – соль, в состав которой входит катион аммония NH 4 + . В катионе аммония азот всегда имеет степень окисления, равную -3. В результате реакции он превращается в аммиак NH 3 . Водород практически всегда (кроме его соединений с металлами) имеет степень окисления, равную +1. Поэтому, чтобы молекула аммиака была электронейтральной, азот должен иметь степень окисления, равную -3. Таким образом, изменения степени окисления азота не происходит, т.е. он не проявляет окислительно-восстановительных свойств.

Б) Как уже было показано выше, азот в аммиаке NH 3 имеет степень окисления -3. В результате реакции с CuO аммиак превращается в простое вещество N 2 . В любом простом веществе степень окисления элемента, которым оно образовано, равна нулю. Таким образом, атом азота теряет свой отрицательный заряд, а поскольку за отрицательный заряд отвечают электроны, это означает их потерю атомом азота в результате реакции. Элемент, который в результате реакции теряет часть своих электронов, называется восстановителем.

В) В результате реакции NH 3 со степенью окисления азота, равной -3, превращается в оксид азота NO. Кислород практически всегда имеет степень окисления, равную -2. Поэтому для того, чтобы молекула оксида азота была электронейтральной, атом азота должен иметь степень окисления +2. Это означает, что атом азота в результате реакции изменил свою степень окисления с -3 до +2. Это говорит о потере атомом азота 5 электронов. То есть азот, как и случает Б, является восстановителем.

Г) N 2 – простое вещество. Во всех простых веществах элемент, который их образует, имеет степень окисления, равную 0. В результате реакции азот превращается в нитрид лития Li3N. Единственная степень окисления щелочного металла, кроме нуля (степень окисления 0 бывает у любого элемента), равна +1. Таким образом, чтобы структурная единица Li3N была электронейтральной, азот должен иметь степень окисления, равную -3. Получается, что в результате реакции азот приобрел отрицательный заряд, что означает присоединение электронов. Азот в данной реакции окислитель.

ОПРЕДЕЛЕНИЕ

Степень окисления - это количественная оценка состояния атома химического элемента в соединении, основанная на его электроотрицательности.

Она принимает как положительные, так и отрицательные значения. Чтобы указать степень окисления элемента в соединении нужно поставить сверху над его символом арабскую цифру с соответствующим знаком («+» или «-»).

Следует помнить, что степень окисления — величина, не имеющая физического смысла, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.

Таблица степени окисления химических элементов

Максимальную положительную и минимальную отрицательную степень окисления можно определить с помощью Периодической таблицы Д.И. Менделеева. Они равны номеру группы, в которой расположен элемент, и разнице между значением «высшей» степени окисления и числом 8, соответственно.

Если рассматривать химические соединения более конкретно, то в веществах с неполярными связями степень окисления элементов равна нулю (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Существуют элементы, для которых характерно только одно значение степени окисления (фтор, металлы IA и IIA групп и т.д.). Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).

Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно (+1) и (+2).

Однако, имеются и такие химические элементы, для которых характерны несколько значений степени окисления (сера - (-2), 0, (+2), (+4), (+6) и др.).

Для того, чтобы легче было запомнить сколько и какие степени окисления характерны для конкретного химического элемента используют таблицы степеней окисления химических элементов, которые выглядят следующим образом:

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

(-1), 0, (+1), (+2), (+3)

Углерод / Carbon

(-4), (-3), (-2), (-1), 0, (+2), (+4)

Азот / Nitrogen

(-3), (-2), (-1), 0, (+1), (+2), (+3), (+4), (+5)

Кислород / Oxygen

(-2), (-1), 0, (+1), (+2)

Фтор / Fluorine

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

(-4), 0, (+2), (+4)

Фосфор / Phosphorus

(-3), 0, (+3), (+5)

Сера / Sulfur

(-2), 0, (+4), (+6)

Хлор / Chlorine

(-1), 0, (+1), (+3), (+5), (+7), редко (+2) и (+4)

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

(+2), (+3), (+4)

Ванадий / Vanadium

(+2), (+3), (+4), (+5)

Хром / Chromium

(+2), (+3), (+6)

Марганец / Manganese

(+2), (+3), (+4), (+6), (+7)

Железо / Iron

(+2), (+3), редко (+4) и (+6)

Кобальт / Cobalt

(+2), (+3), редко (+4)

Никель / Nickel

(+2), редко (+1), (+3) и (+4)

Медь / Copper

+1, +2, редко (+3)

Галлий / Gallium

(+3), редко (+2)

Германий / Germanium

(-4), (+2), (+4)

Мышьяк / Arsenic

(-3), (+3), (+5), редко (+2)

Селен / Selenium

(-2), (+4), (+6), редко (+2)

Бром / Bromine

(-1), (+1), (+5), редко (+3), (+4)

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

(+4), редко (+2) и (+3)

Ниобий / Niobium

(+3), (+5), редко (+2) и (+4)

Молибден / Molybdenum

(+3), (+6), редко (+2), (+3) и (+5)

Технеций / Technetium

Рутений / Ruthenium

(+3), (+4), (+8), редко (+2), (+6) и (+7)

Родий / Rhodium

(+4), редко (+2), (+3) и (+6)

Палладий / Palladium

(+2), (+4), редко (+6)

Серебро / Silver

(+1), редко (+2) и (+3)

Кадмий / Cadmium

(+2), редко (+1)

Индий / Indium

(+3), редко (+1) и (+2)

Олово / Tin

(+2), (+4)

Сурьма / Antimony

(-3), (+3), (+5), редко (+4)

Теллур / Tellurium

(-2), (+4), (+6), редко (+2)

(-1), (+1), (+5), (+7), редко (+3), (+4)

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

(+3), (+4)

Празеодим / Praseodymium

Неодим / Neodymium

(+3), (+4)

Прометий / Promethium

Самарий / Samarium

(+3), редко (+2)

Европий / Europium

(+3), редко (+2)

Гадолиний / Gadolinium

Тербий / Terbium

(+3), (+4)

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

(+3), редко (+2)

Иттербий / Ytterbium

(+3), редко (+2)

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

(+5), редко (+3), (+4)

Вольфрам / Tungsten

(+6), редко (+2), (+3), (+4) и (+5)

Рений / Rhenium

(+2), (+4), (+6), (+7), редко (-1), (+1), (+3), (+5)

Осмий / Osmium

(+3), (+4), (+6), (+8), редко (+2)

Иридий / Iridium

(+3), (+4), (+6), редко (+1) и (+2)

Платина / Platinum

(+2), (+4), (+6), редко (+1) и (+3)

Золото / Gold

(+1), (+3), редко (+2)

Ртуть / Mercury

(+1), (+2)

Талий / Thallium

(+1), (+3), редко (+2)

Свинец / Lead

(+2), (+4)

Висмут / Bismuth

(+3), редко (+3), (+2), (+4) и (+5)

Полоний / Polonium

(+2), (+4), редко (-2) и (+6)

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

(+3), (+4), (+6), редко (+2) и (+5)

Примеры решения задач

ПРИМЕР 1

Ответ Будем поочередно определять степень окисления фосфора в каждой из предложенных схем превращений, а затем выберем верный вариант ответа.
  • Степень окисления фосфора в фосфине равна (-3), а в ортофосфорной кислоте - (+5). Изменение степени окисления фосфора: +3 → +5, т.е. первый вариант ответа.
  • Степень окисления химического элемента в простом веществе равна нулю. Степень окисления фосфора в оксиде состава P 2 O 5 равна (+5). Изменение степени окисления фосфора: 0 → +5, т.е. третий вариант ответа.
  • Степень окисления фосфора в кислоте состава HPO 3 равна (+5), а H 3 PO 2 — (+1). Изменение степени окисления фосфора: +5 → +1, т.е. пятый вариант ответа.

ПРИМЕР 2

Задание Степень окисления (-3) углерод имеет в соединении: а) CH 3 Cl; б) C 2 H 2 ; в) HCOH; г) C 2 H 6 .
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять степень окисления углерода в каждом из предложенных соединений.

а) степень окисления водорода равна (+1), а хлора - (-1). Примем за «х» степень окисления углерода:

x + 3×1 + (-1) =0;

Ответ неверный.

б) степень окисления водорода равна (+1). Примем за «у» степень окисления углерода:

2×у + 2×1 = 0;

Ответ неверный.

в) степень окисления водорода равна (+1), а кислорода - (-2). Примем за «z» степень окисления углерода:

1 + z + (-2) +1 = 0:

Ответ неверный.

г) степень окисления водорода равна (+1). Примем за «a» степень окисления углерода:

2×а + 6×1 = 0;

Верный ответ.

Ответ Вариант (г)

Химической реакцией называют процесс, в результате которого исходные вещества превращаются в продукты реакции. Вещества, полученные после окончания реакции, называют продуктами. От исходных они могут отличаться строением, составом или и тем, и другим.

По изменению состава выделяют следующие типы химических реакций:

  • с изменением состава (таких большинство);
  • без изменения состава (изомеризация и превращение одной аллотропной модификации в другую).

Если состав вещества в результате реакции не изменяется, то обязательно изменяется его строение, например: Cграфит↔Cалмаз

Рассмотрим подробнее классификацию химических реакций, протекающих с изменением состава.

I. По числу и составу веществ

Реакции соединения

В результате таких химических процессов из нескольких веществ образуется одно: А + В + …= С

Соединяться могут:

  • простые вещества: 2Na + S =Na2S;
  • простые со сложными: 2SO2 + O2 = 2SO3;
  • два сложных: CaO + H2O = Ca(OH)2.
  • более двух веществ: 4Fe + 3O2 + 6H2O = 4Fe(OH)3

Реакции разложения

Одно вещество в таких реакциях разлагается на несколько других: А=В+С+…

Продуктами в этом случае могут быть:

  • простые вещества: 2NaCl = 2Na + Cl2
  • простое и сложное: 2KNO3 = 2KNO2 + O2
  • два сложных: CaCO3 = CaO + CO2
  • более двух продуктов: 2AgNO3 = 2Ag + O2 + 2NO2

Реакции замещения

Такие реакции в которых реагируют между собой простое и сложное вещества, причем атомы простого вещества замещают атомы одного из элементов в сложном, и называют реакциями замещения. Схематично процесс замещения атомов можно показать так: А + ВС = В + АС.

Например, CuSO4 + Fe = FeSO4 + Cu

Реакции обмена

В эту группу относят реакции, в ходе которых два сложных вещества меняются своими частями: АВ + СD = AD + CB. Согласно правилу Бертолле, необратимое протекание таких реакций возможно в том случае, если хотя бы один из продуктов:

  • осадок (нерастворимое вещество): 2NaOH + CuSO4 = Cu(OH)2 + Na2SO4;
  • малодиссоциирующее вещество: NaOH + HCl = NaCl + H2O;
  • газ: NaOH + NH4Cl = NaCl + NH3 + H2O (сначала образуется гидрат аммиака NH3 H2O, который при получении тут же разлагается на аммиак и воду).

II. По тепловому эффекту

  1. Экзотермические — процессы, протекающие с выделением тепла:
    C + O2 = CO2 +Q
  2. Эндотермические — реакции, в которых тепло поглощается:
    Cu(OH)2 = CuO + H2O — Q

III. Типы химических реакций по направлению

  1. Обратимыми называют реакции, протекающие в один и тот же момент времени как в прямом, так и в обратном направлении: N2+O2 ↔ 2NO
  2. Необратимые процессы протекают до конца, то есть до тех пор, пока хотя бы одно из реагирующих веществ не израсходуется полностью. Примеры необратимых реакций обмена были рассмотрены выше.

IV. По наличию катализатора

V. По агрегатному состоянию веществ

  1. Если все реагирующие вещества находятся в одинаковых агрегатных состояниях, реакцию называют гомогенной . Протекают такие процессы во всем объеме. Например: NaOH + HCl = NaCl + H2O
  2. Гетерогенными называют реакции между веществами, находящимися в разных агрегатных состояниях, протекающие на поверхности раздела фаз. Например: Zn + 2HCl = ZnCl2 + H2

VI. Типы химических реакций по изменению степени окисления реагирующих веществ

  1. Окислительно-восстановительные (ОВР) — реакции, в которых изменяются степени окисления реагирующих веществ.
  2. Реакции, протекающие без изменения степеней окисления реагентов (БИСО).


Всегда окислительно-восстановительными являются процессы горения и замещения. Реакции обмена протекают без изменения степеней окисления веществ. Все остальные процессы могут быть как ОВР, так и БИСО.

 
Статьи по теме:
My Favourite Subject — Мой любимый предмет Мои любимые уроки на английском языке
We study a lot of various and interesting subjects at school. Some of them are humanities, others - exact sciences. Human beings are not similar in their abilities, so we can be good at different things. I find Technical Drawing the most difficult school
Леру, пьер Отрывок, характеризующий Леру, Пьер
, Франция Дата смерти: Ошибка Lua в Модуль:Infocards на строке 164: attempt to perform arithmetic on local "unixDateOfDeath" (a nil value). Место смерти: Страна: Учёная степень: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field
Икона Божией Матери “Умиление” Псково-Печерская Богоматерь свенская
Икона Божией Матери Печерская-Свенская Икона Божией Матери Печерская-Свенская. Молитвы. Икона Божией Матери Печерская-Свенская имеет два празднования: в день кончины преподобного Феодосия Печерского — 3 мая, а так же в день кончины преподобного Алипия Пе
Приготовим соус из яблок на зиму - к любому блюду!
Во многих странах соус считается залогом вкусовых качеств любого блюда. Он способен преобразить даже отварные овощи. Хозяйки привыкли к однообразию кухни: жареные стейки поливать обычным кетчупом, а к блинам и оладьям подавать сгущенное молоко или же обыч