Как правильно писать измерительный или мерительный инструмент. Сферы применения и классификация мерительного инструмента

В процессе изготовления

Измерительный инструмент - инструмент, предназначенный для измерения линейных объектов.

Простые измерительные инструменты

Измерительная Линейка

Измерительная Линейка - простейший измерительный геометрический инструмент, линейка имеет нанесённые деления, кратные единице измерения длины (сантиметр, дюйм), которые используются для измерения расстояний.

Измерительная рулетка

Штангенинструмент

Штангенинструмент - инструмент для измерений и разметки линейных размеров:

а) отверстий и валов (штангенциркуль);

б) глубины и длины (штангенрейсмас, штангенглубиномер);

в) зубьев зубчатых колес (штангензубомер).

Точность его измерения - десятые доли миллиметра.

Штангенциркуль

Штангенциркуль - универсальный инструмент, предназначенный для высоко-точных измерений наружных и внутренних размеров, а также глубин отверстий.

2)подвижная рамка

3)шкала штанги

4)губки для внутренних измерений

5)губки для наружных измерений

6)линейка глубиномера

8)винт для зажима рамки

Штангенглубиномер

Штангенглубиномер служит для измерений глубин выточек, канавок, уступов и т. д. Отличается от штангенциркуля тем, что не имеет на штанге подвижных губок.

Штангенрейсмус

Измерительный прибор. Предназначен для измерения глубины выемок и впадин.

Угломер

Угломер - угломерный прибор, предназначенный для измерения геометри-ческих углов в различных конструкциях (наружных и внутренних углов изделий.), в деталях и между поверхностями (в основном контактным методом) и между удаленными объектами (оптическим методом). Измерение производится в градусах, на основе линейчатой шкалы, линейчато-круговой шкалы (с механическим указателем или стрелкой), нониуса или в электронном виде, в зависимости от типа прибора.

Конструкция угломеров позволяет производить разметочные работы на плоскости.

Микрометрический инструмент

Микрометр гладкий

Микрометр гладкий - средство для измерения наружных линейных размеров.


Показания по шкалам гладкого микрометра отсчитывают в следующем порядке:

· по шкале стебля читают отметку около штриха, ближайшего к торцу скоса барабана;

· по шкале барабана читают отметку около штриха, ближайшего к продольному штриху стебля;

· складывают оба значения и получают показание микрометра.


Для удобства и ускорения отсчёта показаний имеются гладкий микрометр с цифровой индикацией.



Микрометр резьбовой

Резьбовой микрометр служит для измерения среднего диаметра метрической и дюймовой резьб и имеет такое же устройство, как и обычный микрометр, но отличается от последнего только наличием отверстия в пятке и шпинделе, куда вставляются специальные сменные вставки различной формы: призматические, конические,плоские,шаровые.


а – общий вид,

б – вставки,

в – приемы измерения;

1 – пятка,

2 – шпиндель,

3 и 5 – резьбовые вставки,

4 – измеряемая деталь


К каждому микрометру даются наборы таких вставок, которые укладываются в футляр парами и предназначаются для измерения резьбы с шагом 1 -1,75; 1,75-2,5 и т.д. Угол профиля вставок должен соответствовать углу профиля проверяемой резьбы.

Средний диаметр резьбы детали 4 проверяют призматической вставкой 5, вставляемой в один из витков резьбы; с другой стороны, перпендикулярно оси резьбы в впадину резьбы вставляется конусная вставка 3. Отсчет измерений производится по

шкалам микрометра.


Микрометрический глубиномер

Предназначен для измерения глубины пазов, отверстий и высоты уступов.

Микрометрические глубиномеры имеют такое же устройство, как и микрометры, только вместо скобы имеется основание (90x12 мм) 1 с измерительным стержнем 2. Основание и измерительный стержень закалены. Каждый микрометрический глубиномер снабжен тремя сменными стержнями с пределами измерения 0-25 мм; 25-50 мм; 50-75 мм; 75-100 мм.


1 - основание, 2 – стержень

Микрометрический нутромер

Микрометрический нутромер - это прибор, с помощью которого производят более точные измерения отверстий абсолютным методом, также имеет сменные удлинители.

4)Инструмент с измерительной головкой часового типа:

Стенкомер (толщиномер)

Стенкомер – прибор промышленного назначения, предназначен для контроля и измерения наружных и внутренних размеров, толщины стенок заготовок, канавок. Стенкометр удобен для измерения толщины стенок труб. Диапазон измерения стенкометра от 25 до 50мм. Цена деления 0,1мм до 1 мм, глубина измерения 160мм, наименьший диаметр отверстия 20мм. Пределы допускаемой погрешности ±0,10. Стенкомер индикаторный изготавливается из углеродистой или нержавеющей стали. Стенкомер индикаторный - измерительный прибор, применяемый для измерения линейных размеров контактным методом. Вид измерений – абсолютный.



Стенкомер индикаторный состоит из неподвижной верхней рамки (корпуса) с рукояткой, подвижной нижней рамки, которая прижимается к неподвижной с помощью возвращающей пружины. К верхней рамке прикреплен индикатор часового типа, измерительный стержень которого упирается в горизонтальный выступ нижней рамки. При отжатии нижней рамки, выступ нижней рамки перемещает стержень индикатора. Перемещение измерительного стержня преобразуется зубчатым механизмом измерительной головки часового типа в перемещение стрелки измерительной головки. Отсчет снимается со шкал головки: основной и вспомогательной.

Индикаторный нутромер

Индикаторный нутромер – устройство для внутренних измерений. Индикаторы предназначаются для относительного или сравнительного измерения и проверки отклонений от формы, размеров, а также взаимного расположения поверхностей детали. Этими инструментами проверяют горизонтальность и вертикальность положения плоскостей отдельных деталей (столов, станков и т. п.), а также овальность, конусность валов, цилиндров и др.


1-индикатор часового типа

6-тройник головки нутромера

8- измерительный стержень

9- рычажок

10-стержнь

11- спиральная пружина


Кроме того, индикаторы применяются для проверки биения зубчатых колес, шкивов, шпинделей и других вращающихся деталей. Еще они бывают часового и рычажного типа.

Наибольшее распространение имеют индикаторы часового типа, которые в сочетании с другими инструментами (нутромерами, глубиной мерами и др.) используются для измерения внутренних и наружных размеров, параллельности, плоскостности и т. д.

Часовой индикатор

Он состоит из корпуса 4, в котором через всю длинную втулку 6 проходит измерительный стержень 7 (шпиндель) с зубчатой рейкой, нарезанной на его поверхности.

5)Предельные калибры

Измерительные пробки

Для проверки диаметров отверстий. Непроходная сторона отличается от проходной меньшей длиной измерительной части или наличием проточки у ручки или вставки


Измерительные скобы

Для проверки диаметров валов и длин.

6)Шаблоны

Шаблон - пластина (лекало, трафарет) с вырезами, по контуру которых изготовляются чертежи или изделия либо инструмент для измерения размеров.

Для измерения наружных и внутренних углов. Проверка отклонения от угла производится наблюдением «на просвет».

Лекальные линейки

Линейка предназначена для проверки прямолинейности методом световой щели «на просвет» и применяется при лекальных, слесарных и контрольных операциях.

Лекальные линейки изготовляются из инструментальной углеродистой или легированной стали с высокой точностью и имеют тонкие рабочие грани, называемые ребрами или лезвиями, с радиусом закругления 0,1-0,2 мм, благодаря чему можно весьма точно определять отклонения от прямолинейности.

Поверочная плита

Поверочная плита - металлическая плита с нормированной плоскостностью и чистотой поверхности: предназначенная для контроля плоскостности деталей и разметочных работ; используемая в качестве установочной поверхности при сборке, измерениях и поверках.

Угольники

Угольники поверочные лекальные плоские предназначены для проверки прямых углов (90°) и применяются при слесарно-сборочных и лекальных работах для контроля взаимной перпендикулярности деталей.

Радиусные шаблоны

Радиусные шаблоны предназначены для оценки радиусов выпуклых и вогнутых поверхностей. Изготавливаются три набора радиусных шаблонов. В каждом наборе скомплектованы пластины для контроля, как наружного, так и внутреннего радиусов. Конструкция обоймы набора обеспечивает возможность свободной замены шаблона, а также регулирования плавности вращения их на оси.

Шаблоны резьбовые

Шаблоны резьбовые используются для определения шага и угла профиля резьбы. Шаблоны резьбовые – это стальные пластины с зубцами, расположенными по осевому профилю резьбы. Шаблоны резьбовые бывают для измерения дюймовой или метрической резьбы.

Для определения шага и угла профиля резьбы шаблон резьбовой совмещают с резьбой проверяемой детали так, чтобы зубцы шаблона поместились во впадины резьбы. Далее по плотности прилегания граней шаблона резьбового к резьбе и определяют соответствие шага и угла профиля резьбы шагу и углу профиля шаблона резьбового.

Правильность необходимых размеров и формы деталей в процессе их изготовлении проверяют штриховым (шкальным) измерительным инструментом, а также поверочными линейками, плитами и пр.

Поэтому, кроме типового набора рабочего инструмента, слесарь должен иметь контрольноизмерительные инструменты. К ним относятся: масштабная линейка, рулетка, кронциркуль и нутромер, штангенциркуль, угольник, малка, транспортир, угломер, поверочная линейка и т. п.

Масштабная линейка имеет штрихи-деления, расположенные друг от друга на расстоянии 1 мм, 0,5 мм и иногда 0,25 мм. Эти деления и составляют измерительную шкалу линейки. Для удобства отсчета размеров каждое полусантиметровое деление шкалы отмечается удлиненным штрихом, а каждое сантиметровое – еще более удлиненным штрихом, над которым проставляется цифра, указывающая число сантиметров от начала шкалы. Масштабной линейкой производят измерения наружных и внутренних размеров и расстояний с точностью до 0,5 мм, а при наличии опыта – и до 0,25 мм. Масштабные линейки изготовляют жесткими или упругими с длиной шкалы в 100, 150, 200, 300, 500, 750 и 1000 мм, шириной 10–25 мм и толщиной 0,3–1,5 мм из углеродистой инструментальной стали марок У7 или У8.

Приемы измерения масштабной линейкой показаны на рис. 9.

Рис. 9. Масштабные металлические линейки и приемы измерения ими

Рулетка представляет собой стальную ленту, на поверхности которой нанесена шкала с ценой деления 1 мм (рис. 10). Лента заключена в футляр и втягивается в него либо пружиной (самосвертывающиеся рулетки), либо вращением рукоятки (простые рулетки), либо вдвигается вручную (желобчатые рулетки). Самосвертывающиеся и желобчатые рулетки изготовляются с длиной шкалы 1 и 2 м, а простые – с длиной шкалы 2, 5, 10, 20, 30 и 50 м. Рулетки применяются для измерения линейных размеров: длины, ширины, высоты деталей и расстояний между их отдельными частями, а также длин дуг, окружностей и кривых. Измеряя окружность цилиндра, вокруг него плотно обертывают стальную ленту рулетки. При этом деление шкалы, совпадающее с нулевым делением, указывает нам длину измеряемой окружности. Такими приемами пользуются обычно при необходимости определить длину развертки или диаметр большого цилиндра, если непосредственное измерение его затруднено.

Рис. 10. Рулетки:

а – кнопочная самосвертывающаяся, б – простая, в – желобчатая, вдвигающаяся вручную

Для переноса размеров на масштабную линейку и контроля размеров деталей в процессе их изготовления пользуются кронциркулем и нутромером.

Кронциркуль применяется для измерения наружных размеров деталей: диаметров, длин, толщин буртиков, стенок и т. п. Он состоит из двух изогнутых по большому радиусу ножек длиной 150–200 мм, соединенных шарниром (рис. 11, а). При измерении кронциркуль берут правой рукой за шарнир и раздвигают его ножки так, чтобы их концы касались проверяемой детали и перемещались по ней с небольшим усилием. Размер детали определяют наложением ножек кронциркуля на масштабную линейку.

Более удобным является пружинный кронциркуль (рис. 11, б), ножки такого кронциркуля под давлением кольцевой пружины стремятся разойтись, но гайка 2, навернутая на стяжной винт 3, укрепленный на одной ножке и свободно проходящий сквозь другую, препятствует этому. Вращением гайки 2 по винту 3 с мелкой резьбой устанавливают ножки на размер, который не может измениться произвольно. Точность измерения кронциркулем 0,25 – 0,5 мм.

Рис. 11. Кронциркуль и нутромер. Способы измерения

Изготовляют его из углеродистой инструментальной стали У7 или У8, а измерительные концы на длине 15–20 мм закаливают.

Нутромер служит для измерения внутренних размеров: диаметром отверстий, размеров пазов, выточек и т. п. На рис. 11, а, б показаны обыкновенный и пружинный нутромеры. В отличие от кронциркуля он имеет прямые ножки с отогнутыми губками. Устройство нутромера аналогично устройству кронциркуля.

При измерении диаметра отверстия ножки нутромера разводят до легкого касания со стенками детали и затем вводят в отверстие отвесно. Замеренный размер отверстия будет соответствовать действительному только в том случае, когда нутромер не будет перекошен, т. е. линия, проходящая через концы ножек, будет перпендикулярной оси отверстия. Отсчет размера производится по измерительной линейке; при этом одну ножку нутромера упирают и плоскость, к которой под прямым углом прижата торцовая грань измерительной линейки, и производят по ней отсчет размера (рис. 11, в). На рис. 11, г показано измерение развода ножек нутромера при помощи штангенциркуля. При этом обеспечивается большая точность (до ±0,1 мм), чем при отсчете по линейке.

Изготовляют нутромеры из углеродистой инструментальной стали У7 или У8 с закалкой измерительных концов на длине 15–20 мм.

Точность измерений, которую можно получить с помощью масштабной линейки, складного метра или рулетки, далеко не всегда удовлетворяет требованиям современного машиностроения. Поэтому при изготовлении ответственных деталей машин пользуются более совершенными масштабными инструментами, позволяющими определять размеры с повышенной точностью. К таким инструментам в первую очередь относится штангенциркуль.

Штангенциркуль применяется для измерений как наружных, так и внутренних размеров деталей (рис. 12, а). Он состоит из штанги 8 и двух пар губок: нижних 1 и 2 и верхних 3 и 4. Губки 1 и 4 изготовлены заодно с рамкой 6, скользящей по штанге. С помощью винта 5 рамка может быть закреплена в требуемом положении на штанге. Нижние губки служат для измерений наружных размеров, а верхние – для внутренних измерений. Глубиномер 7 соединен с подвижной рамкой 6, передвигается по пазу штанги 8 и служит для измерения глубины отверстий, пазов, выточек и др. Отсчет целых миллиметров производится по шкале штанги, а отсчет долей миллиметра – по шкале нониуса 9, помещенной в вырезе рамки 6 штангенциркуля.

Шкала нониуса имеет десять равных делений на длине 9 мм; таким образом, каждое деление шкалы нониуса меньше деления масштаба (линейки) на 0,1 мм. При измерении детали штангенциркулем сначала отсчитывают по шкале целое число миллиметров на штанге, отыскивая его под первым штрихом нониуса, а затем с помощью нониуса определяют десятые доли миллиметра. При этом намечают деление нониуса, совпадающее с делением на штанге. Порядковое число этого деления показывает десятые доли миллиметра, которые прибавляют к целому числу миллиметров. На рис. 12, б изображены три положения нониуса относительно шкалы штанги, соответствующие размерам: 0,1; 0,5 и 25,6 мм.

Рис. 12. Штангенциркуль с точностью измерения 0,1 мм

Зачастую приходится изготовлять детали, поверхности которых сопрягаются под различными углами. Для измерения этих углов пользуются угольниками, малками, угломерами и др. Угольники и малки являются наиболее распространенным инструментом для проверки прямых углов. Стальные угольники с углом в 90 ° бывают различных размеров, цельные или составные (рис. 13).

Угольники изготовляют четырех классов точности: 0, 1, 2 и 3. Наиболее точные угольники класса 0. Точные угольники с фасками называются лекальными (рис. 13, а, б). Для проверки прямых углов угольник накладывают на проверяемую деталь и определяют правильность обработки проверяемого угла на просвет. При проверке наружного угла угольник накладывают на деталь его внутренней частью (рис. 13, в), а при проверке внутреннего угла – наружной частью. Наложив угольник одной стороной на обработанную сторону детали, слегка прижимая его, совмещают другую сторону угольника с обрабатываемой стороной детали и по образовавшемуся просвету судят о точности выполнения прямого угла (рис. 13, г). Иногда размер просвета определяют с помощью щупов. Необходимо следить за тем, чтобы угольник устанавливался в плоскости, перпендикулярной к линии пересечения плоскостей, образующих прямой угол (рис. 13, д). При наклонных положениях угольника (рис. 13, е, ж) возможны ошибки замеров.

Рис. 13. Угольники с углом 90° и способы их применения

Простая малка (рис. 14, а) состоит из обоймы 1 и линейки 2 , закрепленной шарнирно между двумя планками обоймы. Шарнирное крепление обоймы позволяет линейке занимать по отношению к обойме положение под любым углом. Малку устанавливают на требуемый угол по образцу детали или по угловым плиткам. Требуемый угол фиксируется винтом 3 с барашковой гайкой.

Простая малка служит для измерения (переноса) одновременно только одного угла.

Универсальная малка служит для одновременного переноса двух или трех углов.

Для измерения или разметки углов, для настройки малок или определения величины перенесенных ими углов пользуются угломерными инструментами с независимым углом. К таким инструментам относятся транспортиры и угломеры. Транспортиры обычно применяются для измерения и разметки углов на плоскости. Угломеры бывают простые и универсальные.

Рис. 14. Простая малка и способы ее применения

Простой угломер состоит из линейки 1 и транспортира 2 (рис. 15, а). При измерениях угломер накладывают на деталь так, чтобы линейка 1 и нижний обрез m полки транспортира 2 совпадали со сторонами измеряемой детали 3. Величину угла определяют по указателю 4, перемещающемуся по шкале транспортира вместе с линейкой. Простым угломером можно измерять величину углов с точностью 0,5–1°.

Рис. 15. Угломеры: а – простой, б – оптический

Оптический угломер состоит из корпуса 1 (рис. 15, б), в котором закреплен стеклянный диск со шкалой, имеющей деления в градусах и минутах.

Цена малых делений 10 ". С корпусом жестко скреплена основная (неподвижная) линейка 3. На диске 5 смонтирована лупа 6, рычаг 4 и укреплена подвижная линейка 2 . Под лупой параллельно стеклянному диску расположена небольшая стеклянная пластинка, на которой нанесен указатель, ясно видимый через окуляр лупы. Линейку 2 можно перемещать в продольном направлении и с помощью рычага 4 закреплять в нужном положении. Во время поворота линейки 2 в ту или другую сторону будут вращаться в том же направлении диск 5 и лупа 6. Таким образом, определенному положению линейки будет соответствовать вполне определенное положение диска и лупы. После того, как они будут закреплены зажимным кольцом 7, наблюдая через лупу 6, производят отсчет показаний угломера.

Оптическим угломером можно измерять углы от 0 до 180 °. Допускаемые погрешности показания оптического угломера ±5 ".

Поверочные линейки служат для проверки плоскостей на прямолинейность. В процессе обработки плоскостей чаще всего пользуются лекальными линейками. Они подразделяются на линейки лекальные с двусторонним скосом, трехгранные и четырехгранные (рис. 16, а).

Рис. 16. Лекальные линейки: а – конструктивные формы линеек: двухсторонняя, трехгранная, четырехгранная, б – прием наложения линейки

Лекальные линейки изготовляются с высокой точностью и имеют тонкие ребра с радиусом закругления 0,1–0,2 мм, благодаря чему можно весьма точно определить отклонение от прямолинейности по способу световой щели (на просвет). Для этого линейка своим ребром устанавливается на проверяемую поверхность детали против света (рис. 16, б). Имеющиеся отклонения от прямолинейности будут при этом заметны между линейкой и поверхностью детали. При хорошем освещении можно обнаружить отклонение от прямолинейности величиной до 0,005-0,002 мм. Лекальные линейки изготовляются длиной от 25 до 500 мм из углеродистой инструментальной или легированной стали с последующей закалкой.

Хранение измерительного инструмента и уход за ним. Точность и долговечность инструмента зависят не только от качества изготовления и умелого обращения, но также от правильного хранения и ухода за ним.

Простейший измерительный инструмент хранится обычно в ящике верстака, где его располагают в определенном порядке по типам инструмента и размерам. Штангенциркули и лекальные линейки хранятся в специальных футлярах с закрывающимися крышками. Для предохранения инструментов от ржавчины их смазывают тонким слоем чистого технического вазелина, предварительно хорошо протерев сухой тряпкой. Перед употреблением инструмента смазка удаляется чистой тряпкой или промыванием в бензине. При появлении пятен ржавчины на инструменте его необходимо положить на сутки в керосин, после чего промыть бензином, насухо протереть и снова смазать.

Для определения действительных размеров деталей применяются различные измерительные инструменты, которые делятся на универсаль­ные, или шкальные, калибры, или бесшкальные, и точные.

К универсальным измерительным инструментам относятся: линейка, метр, штангенциркуль, глубиномер, микрометр, штихмас, угломер и др.

Для измерения отдельных элементов деталей, которые не могут быть непосредственно измерены обычными инструментами, пользуются вспомогательными инструментами: кронциркулем, нутромером, рейсма­сом и др.

Измерительные инструменты делятся также на рабочие и контроль­ные. Рабочий инструмент предназначается для пользования в цехах, контрольный - для проверки рабочего инструмента.

Кроме того, в серийных производствах применяют предельные из­мерительные инструменты.

Как бы тщательно ни были произведены измерения размеров детали, результаты измерений получаются недостаточно точными, с одной сто­роны, вследствие несовершенства измерительных инструментов, с другой,- в зависимости от способа измерения. Отклонение полученного измере­нием размера от действительного называют точностью измерения, а величину этого отклонения-степенью точности измерения. Ясно, что чем точнее требуется измерить деталь, тем качественнее должен быть измерительный инструмент и способы измерения. Поэтому в зависимости от точности измерений применяются соответственно и измерительные инструменты, наиболее употребительные из которых следующие:

Стальная линейка. Изготовляется длиной от 150 до 500 мм (фиг. 207) и служит для измерения небольших длин. Точность измерения стальной линейкой достигает 0,25 -0,5 мм, в зависимости от навыка измеряющего.

Метр . Для измерения больших длин применяются метры (фиг. 208), которые изготовляются деревянными и стальными. Деревянные метры бывают только складные и употребляются обычно для грубых измере­ний. Стальные метры изготовляются складными и в виде рулетки. Склад­ные стальные метры, как и деревянные, служат для грубых измерений. Недостатком складных деревянных и стальных метров является то, что у них разбалтываются шарниры соединений, вследствие чего они дают большие погрешности. Поэтому при измерении лучше пользоваться метром-рулеткой. Метры-рулетки изготовляются одно- и двухметровые. Точность измерения такими метрами равна 0,25-0,5 мм, т. е. такая же, как и при измерении стальной линейкой.

Штангенциркуль . Штангенциркуль служит для более точных изме­рений длин и диаметров (фиг. 209). Он состоит из штанги 1 с нанесён­ными на ней делениями в миллиметрах. На левом конце её имеется неподвижная губка 2. Подвижная губка 3 с рамкой 4, нониусом и за­крепительным винтом соединены с ползунком 6 посредством микроме­трического винта 5. На микрометрический винт 5 навинчена накатанная гайка 7. Ползунок 6 закрепляется на штанге винтом 3.

Кроме описанного, существуют также штангенциркули с глубино­мером (фиг. 212).

Штангенциркулем можно производить измерения с точностью 0,1 - 0,025 мм.

Нониус штангенциркуля обычно разделён на 10 равных частей, при­чём каждое его деление равно 0,9 мм, следовательно, 10 делений нониуса равны 9 делениям штанги, т. е. 9 мм.

Если губки штангенциркуля сдви­нуть вплотную, то первый штрих но­ниуса, обозначенный нулём, совпадает с нулевым делением штанги, а деся­тое деление нониуса-с девятым её делением (фиг. 210). Разность между первым делением штанги и первым делением нониуса составляет 0,1 мм, для второго деления-0,2 мм, третьего-0,3 мм и девятого- 0,9 мм. Поэтому если подвижную губку сдвинуть вправо так, что первое деление нониуса совпадёт с первым делением штанги, то к целому числу миллиметров, находящихся влево от нулевого деления нониуса, необхо­димо добавить 0,1 мм; при совпадении второго деления -0,2 мм, третьего-0,3 мм и т. д.

Точность измерения штангенциркулем равняется отношению одного деления штанги к числу делений нониуса. Если нониус поделён на 10 равных частей, то точность измерения будет равна 0,1 мм. Чтобы уста­новить штангенциркуль на заданный размер, перемещают подвижную губку вправо до тех пор, пока нулевое деление нониуса не совпадёт с нужным целым числом миллиметров на штанге, и продолжают переме­щать губку в том же направлении до тех пор, пока требуемое деление на нониусе не совпадёт с ближайшим к нему делением на штанге. Де­ление нониуса, совпадающее с каким-либо делением штанги, укажет на число десятых долей миллиметра. Если, например, требуется установить штангенциркуль на размер 38,4 мм, то для этого освобождают закреп­ляющий рамку винт и перемещают её так, чтобы нулевое деление нониуса совпало с 38-м делением штанги. Если штангенциркуль снабжён ползуном, то установка нониуса на размер 0,4 мм осуществляется вра­щением гайки 7 до тех пор, пока четвёртое деление нониуса не совпа­дёт с ближайшим делением штанги (фиг. 211, а).

Чтобы прочесть измеренный штангенциркулем размер детали, необ­ходимо заметить, с каким делением штанги совпадает нулевое деление нониуса. Совпавшее деление и будет показывать величину размера измеренного элемента детали. Если же нулевое деление нониуса не совпадает с целым числом делений на штанге, то замечаем на штанге ближайшее число слева от нуля нониуса и добавляем к нему число долей миллиметра на нониусе, совпадающее с ближайшим делением штанги.

На фиг. 211, б показан размер 45,3 мм соответственно измеренному размеру детали штангенциркулем.

На фиг. 210 показано измерение отверстия нижней парой губок. В этом случае к размеру, указываемому штангенциркулем, необходимо прибавлять толщину концов губок, которая обычно составляет 8 или 10 мм.

Как уже упоминалось, некоторые штангенциркули имеют приспособ­ление для измерения глубины, так называемый глубиномер (фиг. 212).

Глубиномер прикреплён к рамке подвижной губки. Измеряемая глубина отсчитывается так, как и при измерении толщины или диаметра детали.

Микрометр . Микрометр (фиг. 213) является более точным измери­тельным инструментом, чем штангенциркуль. С помощью микрометра можно производить измерения с точностью до 0,01 мм.

Микрометр состоит из плоской скобы 7, пятки 2, шпинделя 3, зажим­ного кольца 4, трубки с делениями 5, гильзы 6 и трещотки 7. С труб­кой 5 соединён подвижный шпиндель 3 с резьбой, имеющей шаг 0,5 мм.

Вращением гильзы можно установить шпиндель на нужную величину. В случае, когда шпиндель упрётся в пятку, т. е. когда расстояние между пяткой и торцом шпинделя равно нулю, нулевое деление нониуса дол­жно быть на нулевом делении трубки. Головка трещотки связана с трещоткой внутри микрометра. Трещотка позволяет сохранять опреде­лённое постоянное давление шпинделя на измеряемый предмет. В случае превышения этого давления головка начинает проскакивать, производя при этом треск.

На трубке и скошенной кром­ке гильзы имеются деления, число которых на гильзе равно 50, а на трубке - соответственно номиналь­ному размеру микрометра. Расстоя­ние между делениями на трубке равно 0,5 мм. При одном полном обороте гильзы шпиндель переме­щается на 0,5 мм. Таким образом, при повороте гильзы на одно деление шпиндель переместится на 0,01 мм.

По делениям на трубке отсчитывают целое число и половины мил­лиметров, а по делениям на гильзе-сотые доли миллиметра.

Сумма отсчётов на трубке и гильзе показывает расстояние между пяткой и торцом шпинделя микрометра.

На фиг. 214, а показаны деления микрометра, установленного на величину, равную 14,31 мм, а на фиг. 214, б - на 12,38 мм.

При измерении микрометром во избежание ошибок необходимо с момента подхода шпинделя к измеряемой детали примерно на расстоя­нии 1-2 мм вращать не гильзу, а головку трещотки.

Микрометрический штихмас . Штихмас (фиг. 215) служит для изме­рения диаметров отверстий и по устройству имеет сходство с измерительным устройством микрометра. Шгихмас состоит из гильзы, снаб­жённой наконечником со сфериче­ской поверхностью 2. В гильзу 7 входит микрометрический винт, имеющий на конце сферическую поверхность 5. Результаты измере­ния отсчитываются по делениям на трубке 3 (целые числа и половины миллиметров) и по делениям гильзы 4 (сотые доли миллиметра). Таким образом, результат измерения является суммой двух отсчётов.

Как и у микрометра, на скошенной кромке гильзы имеется 50 деле­ний, а на трубке 3 штихмаса нанесены миллиметровые деления.

Если гильза 4 сделает один полный оборот, то винт с наконечни­ком 5 переместится на 0,5 мм, следовательно, при повороте гильзы на одно деление её шкалы, т. е. на 1/50 часть оборота, винт переместится на 0,01 мм.

На фиг. 215 штихмас показывает, что расстояние между торцами наконечников 2 и 5 равно 82 мм. Эта величина получилась от сложения двух размеров: номинального размера штихмаса, равного 63 мм (за номинальный размер штихмаса принимают расстояние между меритель­ными торцами 2 и 5 при совпадении нуля нониуса с нулевым делением трубки) и отсчёта по делениям трубки и нониуса. В данном случае эта величина составляет 19 мм. Таким образом, 63+19=82 мм.

Микрометрический глубиномер (фиг. 216) имеет такое же устрой­ство, как и микрометр. Глубиномер состоит из поперечины 1, имеющей измерительную плоскость, жёстко скреплённую со стеблем 2. Внутри стебля имеется винт с измери­тельным стержнем 3 и сто­порное кольцо 4, гильза 5 и трещотка 6. При измерении поперечину прижимают изме­рительной плоскостью к де­тали и производят измерение так, как при измерениях ми­крометром.

Угломер . Угломером называется прибор, при помощи которого про­изводится построение и измерение углов деталей. Угломеры изготов­ляются с нониусом и без нониуса. Наибольшее распространение в СССР получили угломеры с нониусом, заводов „Красный инструментальщик"" и „Калибр".

Угломер завода „Красный инструментальщик" (фиг. 217) состоит из полудиска 1 с прикреплённой к нему линейкой 2. Подвижная линейка 3, жёстко скреплённая с нониусом 4, вращается вокруг оси О. Для точной установки нониуса пользуются микрометрическим винтом 5. При изме­рении углов от 0 до 90° на линейку 3 надевают угольник 6. Точность измерения для этого угломера находится в пределах 2". Более совер­шенным угломером является угломер завода „Калибр" конструкции Д. С. Семёнова (фиг. 218, а). Этот угломер состоит из дуги 1 с нане­сённой на ней градусной шкалой, по которой перемещается пластинка 2 и жёстко прикреплённый к ней нониус 3. На пластинке 2 имеется дер­жатель 4, при помощи которого закрепляется угольник 5 с линейкой 6.

Пластинка 7 жёстко соединена с дугой 1. Основная градусная шкала разделена на 130°, однако путём установки в различные положения измерительных деталей угломера можно измерять углы от 0 до 320° (фиг.218, б). Точность измерения для угломеров этой конструкции - 2".

Чтобы сделать, например, отсчёт угла? по такому угломеру, когда угольник занимает положение, отмеченное буквой А (фиг. 218, а), необ­ходимо прежде всего посмотреть, между какими делениями расположено нулевое деление нониуса. На фиг. 218, а это деление расположено между цифрами 33 и 34 основной градусной шкалы. После этого находят справа то деление нониуса, которое совпадает с одним из ближайших делений основной шкалы. В данном случае совпадает деление, соответствующее 10". Следовательно, искомый угол а составляет 33° 10". Легко понять, откуда получены 10". Деление, соответствующее десяти минутам-пятое справа от нулевого деления нониуса. Так как цена каждого деления нониуса равна 2", то для пяти делений это составит 2"X5=10".

Пусть, например, требуется измерить угол p, соответствующий поло­жению угольника, отмеченного буквой Б. Легко видеть, что угол? является тупым углом, состоящим из суммы углов: а и прямого угла.

Величина угла а определена раньше и равна 33° 10". Таким образом, угол? = a + 90° = 33°10" + 90° = 123°10".

Кронциркуль и нутромер (фиг. 219, а и б) являются вспомога­тельными инструментами и применяются для измерения величин путем переноса размера с изделия на измерительный инструмент или наоборот.

Кронциркулем производится измерение наружных размеров деталей, нутромером - внутренних.

Кронциркуль и нутромер состоят из двух стальных ножек, соеди­нённых шарниром.

Точность измерения этими инструментами невелика.

Рейсмас . Рейсмасом (фиг. 220) пользуются при нанесении на деталях параллельных линий, при разметочных работах и измерении недоступных мест деталей, когорые не могут быть измерены обычно применяемыми инструментами. Простейший рейсмас (фиг. 220, а) состоит из стального стержня, перемещающегося по пазу стойки и затем закрепляющегося на стойке при помощи барашка. Стойка рейсмаса укреплена на подставке. Работа рейсмасом производится на разметочной плите.

Штангенрейсмас (фиг. 220, б). Для точных измерений и разметоч­ных работ применяют штангенрейсмас с нониусом. Подвижное устрой­ство с чертилкой и нониусом передвигается по линейке и закрепляется в нужном положении винтами. Точная установка по нониусу произво­дится так же, как и у штангенциркуля.

Резьбомеры . Для определения шага резьбы или числа ниток на 1" на резьбовых изделиях служат резьбомеры (фиг.221). Резьбомеры изго­товляются для разных систем резьбы и представляют собой набор сталь­ных гребёнок, заключённых в колодку.

Определение шага резьбы или количества ниток на 1" производится путём подбора профиля гребёнки, соответствующего углу профиля резьбы. Гребёнка точно укажет шаг резьбы или количество ниток, приходящихся на 1" (фиг. 221, б).

Чтобы убедиться в правильности найденного шага резьбы или числа ниток, приходящихся на 1", необходимо дополнительно измерить наруж­ный диаметр резьбы при помощи штангенциркуля и сверить получен­ные данные с данными соответствующего стандарта на резьбу. Если данные измерения совпадают, то шаг или число ниток определены пра­вильно, в противном случае измерение нужно повторить. При определе­нии этих величин необходимо внимательно смотреть, правильно ли подобран резьбомер, т. е. соответствует ли угол профиля резьбомера профилю резьбового изделия. Для более точных измерений резьб применяют специальные резьбовые микрометры, резьбовые калибры, универсальные и инструментальные микроскопы.

Народная мудрость гласит: «Семь раз отмерь, один раз отрежь», и, не смотря на то, что эта поговорка уже давно воспринимается исключительно в иносказательном смысле, она по-прежнему не теряет актуальности и в буквальном.
Человек начал пользоваться различными способами измерений с давних времен, начиная от локтей и колен, а затем линеек и стрелочных измерительных приборов, и до современных контрольно-измерительных инструментов.

Используется не только в различных процессах производства и строительства, но и на бытовом уровне: линейка, рулетка, угольник, строительный уровень и есть почти в каждом доме. Ведь хорошие измерительные инструменты позволяют сделать любой замер быстро и точно.

Список профессиональных контрольно-измерительных инструментов достаточно широк, но ряд из них находят постоянное применение и в обычных домах, где ведется строительство, ремонт или улучшение комфорта дома.

Линейка
Простейший измерительный инструмент, это . Она представляет собой ровную пластину, с нанесёнными делениями, кратными единице измерения длины. Линейка применяется для геометрических построений, линейных измерений и вычислений. Для геометрических построений применяют прямые, треугольные и фигурные линейки. Для проверки прямолинейности и плоскости поверхностей служит поверочная линейка, а для перевода размеров из одного масштаба в другой применяют масштабную линейку, для разметки прямых линий на изделиях применяют металлические линейки.

Измерительная рулетка
Для измерения больших длин и диаметров используется . Измерительная рулетка с уровнем поможет не только измерить расстояние, но и определить наклон поверхности. Рулетка может иметь магнитный наконечник, который значительно облегчит работу. При выборе следует обратить внимание на корпус рулетки и отдать предпочтение нескользящему пластику или резине. Такой инструмент не выскользнет из рук, а при падении не разобьется. Еще нужно проверить наличие и качество стопора, чтобы в ненужный момент рулетка не свернулась. Также тщательно должна подбираться измерительная лента, она должна иметь подходящую ширину (чем длиннее, тем шире).
Между наконечником и началом нанесенных делений не должно быть зазоров, сами цифры должны находиться под износостойким слоем, во избежание быстрого вытирания.

Циркуль
Для разметки и измерения окружностей используют циркули.
Циркуль с регулируемым винтом можно применять как для измерения, так и для разметки деталей, особенно в том случае, когда нужно разделить отрезок на несколько равных частей.
Для измерения наружных размеров применяют кронциркуль , для измерения внутренних размеров – нутромер , а для разметки окружностей большого диаметра– штанговый циркуль . С помощью этих инструментов также проверяют размеры, наносимые на детали.

Штангенинструменты
Используют для измерения линейных размеров, не требующих 100% точности. Измерение в штангенинструментах основано на применении нониуса, который позволяет отсчитывать дробные деления основной шкалы.
Широко применяется штангенинструмент специального назначения для измерения канавок на наружных и внутренних поверхностях, проточек, пазов, расстояния между осями отверстий, малых диаметров, толщины стенок труб и т.д. Конструкция разного штангенинструмента отличается формой измерительных поверхностей и их взаимным расположением. Штангенинструмент можно оборудовать вспомогательными измерительными поверхностями и приспособлениями для расширения функциональных возможностей (измерение высот, уступов и т.д.).

Штангенциркуль
Универсальный инструмент, предназначенный для высокоточных измерений наружных и внутренних размеров, а также глубин отверстий. Это один из наиболее популярных и востребованных метрических инструментов, благодаря простой конструкции, удобству и быстроте в обращении. Срок службы , как правило, не ограничен, поэтому к выбору этого инструмента нужно относится очень внимательно и придирчиво.

Штангенциркуль - главный "меритель" в производстве. Обладает удивительной универсальностью и незаменим на каждом рабочем месте. Один инструмент для замера длины детали, высоты уступа, диаметров отверстия и вала, ширины паза, глубины отверстия - все возможности штангенциркуля не перечислить. Некоторые основные применения штангенциркуля типа ШЦ-I показаны на рисунках:

Штангенрейсмас
Фактически, установленный в вертикальной плоскости на основании штангенциркуль. Применяется для разметки деталей, измерения высоты, глубины отверстий и расположения поверхностей корпусных деталей.

Штангенглубиномер
Похож на штангенциркуль, но не имеет на штанге подвижных губок. Предназначен для измерения глубины пазов, и высоты уступов. Инструмент состоит из штанги с разметкой, рамки с нониусом и винта. Рабочая часть штанги штангенглубиномера вводится в замеряемый паз, рамка опускается до упора и фиксируется, а затем снимаются показания. Цена деления рамки, как и у штангенциркуля, 0,5 мм, а – 0,02 мм. Микрометрические , предназначены для измерения предельно малых глубин.
Для получения достоверных замеров с любой разновидностью штангенинструмента, при измерении деталей нельзя допускать сильного зажима, так как может возникнуть перекос движка, во избежание перекоса ножек важно не допускать ослабления посадки и качки движка на штанге.

Микрометр
Когда не хватает точности измерений штангенинструментов, используют . Принцип действия его достаточно прост. Трубка, соединенная скобой с неподвижной пяткой имеет внутреннюю резьбу, в которую вворачивается винт, с одной стороны гладкий (шпиндель), а другой винт соединен с барабаном. Если повернуть барабан на один полный оборот в 50 делений, то трубка приближается (удаляется) к пятке на один шаг резьбы винта (0,5 мм). При измерении деталь зажимается между пяткой и шпинделем, а поворот барабана на одно деление приводит к перемещению шпинделя относительно пятки на 0,01 мм.

Угломер
Предназначен для измерения наружных и внутренних углов деталей методом непосредственной оценки, необходим, в первую очередь, при проведении плотницких и строительных работ. При помощи различных видов можно произвести замеры передних и задних, наружных и внутренних углов. Универсальный(регулируемый) угломер может справиться со всеми разновидностями углов. Угломеры бывают механическими и цифровыми. Механические могут быть оснащены пузырьковыми или спиртовыми уровнями, а так же ленточным счетным устройством.

Измерительные щупы
Предназначаются для проведения измерений зазоров. Принцип их использования прост – проверяется возможность прохождения пластины через зазор. По толщине подразделяются на клиновые и плоские(при использовании клиновой разновидности, щуп аккуратно вводится в зазор до упора, затем выверяется полученное значение толщины на корпусе). В измерениях зазоров предпочтительнее использовать набор щупов.
Измерения производятся до того момента, пока выверяющая пластинка едва входит, а последующая уже нет.

Толщиномер – прибор для определения толщины нанесенного покрытия. может измерять не только толщину краски, но также определять толщину пленки жидкости или сухой порошковой смеси покрывающей поверхность.

Толщиномеры
Могут быть механическими и электронными. Механические измерители уже практически не используются, так как для замера требуют разрушения покрытия. Современные электронные толщиномеры в основном подразделяются на магнитные, цифровые и ультразвуковые. Все они просты в обращении, имеют высокую степень точности и низкое значение погрешности.

Строительный уровень
Инструмент, без которого не обходится ни одно строительство. Он позволяет определять отклонения поверхности от горизонтали или вертикали. К выбору этого инструмента нужно подходить очень внимательно, чтобы исключить малейшие отклонения.
Вертикальность на высоких объектах устанавливают с помощью обыкновенного отвеса – грузика на шнуре. А с помощью отвеса – ватерпаса (грузик выполнен в форме равнобедренного треугольника), можно проверить горизонтальность поверхности.

Плиты поверочные
Предназначены для проверки плоскости и для использования в качестве вспомогательного приспособления при различных контрольных и разметочных работах.
Также используется в качестве установочной поверхности при сборке, измерениях и поверках.
Для разметки заготовок в столярной практике часто используются отволока, разметочная гребенка и рейсмус.
Кроме них на практике применяются различные шаблоны, лекала и другие приспособления для ускорения разметки, но они обычно используются уже в профессиональной деятельности.

Отволока
Предназначена для нанесения разметочных линий на край заготовки. Это большой брусок со скосом на одном конце и выступом с вбитым гвоздем на другом. Линии отмечаются на поверхности именно острым концом этого гвоздя.

Разметочная гребенка (скоба)
Позволяет сразу провести нужное количество рисок на несколько заготовок для последующей выборки пазов.
Для этого делают деревянный брусок с выбранной четвертью на конце и вбивают в него шпильки, согласно намечаемым рискам.

Рейсмус
Предназначен для разметки параллельных линий относительно края заготовки. В колодке рейсмуса перемещаются и фиксируются в определенном положении бруски с острыми шпильками, которыми и производится разметка. Рейсмусы изготавливают как из дерева, так и из металла с нанесением метрической шкалы для измерения вылета разметочных шпилек.

В целом, работа даже с простейшим измерительными инструментами требует большого навыка и особого внимания, не говоря уже об особо сложных приборах. При проведении измерений с любым даже высокоточным оборудованием никто не застрахован от ошибок.
Перед замером необходимо убедиться в том, что все измерительные поверхности ровные, без выбоин и искривлений. Основные причины, приводящие к погрешностям – неправильное использование инструментов, применение поврежденных или не качественных устройств, загрязнение рабочих поверхностей и неправильно выбранный температурный режим измерений(optimum 200C). Чтобы инструменты служили долго и исправно, по окончанию работ их тщательно протирают, при необходимости смазывают, стопоры ослабляют и чуть разводят измерительные поверхности. Во избежание деформаций хранить любой измерительный инструмент нужно в сухом и теплом месте .

Во всяком деле, на каждом производстве, в любой сфере жизнедеятельности человека присутствуют измерения. Чаще всего, этого требуют чертежи и государственные стандарты, иногда – производственная или жизненная необходимость. Современный рынок наполнен новейшими контрольно измерительными приборами и инструментами, в том числе лазерными. Но это не значит, что ушел в прошлое старый, удобный и наиболее часто используемый инструментарий. О нем сегодня и поговорим, попробуем разобраться, какие виды измерительных инструментов существуют, и где применяются.

Классификация

Классифицировать измерительный инструмент можно по нескольким признакам.

  1. По видам работ. С большой точностью распределить измерители на строительные, слесарные и столярные невозможно. Многие приспособления используются везде. Так что такая классификация будет условной.
  2. По материалам его можно поделить на: металлический, деревянный, пластиковый и комбинированный.
  3. По способу использования: ручной, механический, автоматический.
  4. По конструкции: простой и сложный.

Подобное распределение поможет правильно использовать измерительные инструменты, обеспечить их хранение в соответствии с нормами и правилами.

Строительный измерительный инструмент

В первую очередь – это рулетка. Инструмент представляет собой металлическую ленту с делениями (шаг 1 мм), заключенную в пластиковый или металлический корпус. Сматывание ленты может выполняться вручную или при помощи пружины. Бывают разной длины и ширины. Рулетку неправильно относить только в строительную категорию, для нее больше подходит класс под названием «универсальный измерительный инструмент».

Посмотреть разновидности, описания, характеристики, цены или подобрать что-то для себя, можно по ссылке — Рулетки строительные .

Кроме того, строители в своей работе обязательно используют:

Слесарный измерительный инструмент

Работа слесаря обычно связана с металлом. Его инструменты используются в машиностроении и металлообработке. Считается, что слесарный – наиболее точный измерительный инструмент. Этот факт определяется спецификой и сферой его использования, когда допуски находятся в пределах от 0,1мм до 0,005 мм.

Помимо рулетки или линейки, главным измерительным инструментом является штангенциркуль. С его помощью удобно измерять внутренние и наружные диаметры отверстий, контролировать длину заготовок. Он состоит из неподвижной штанги с делениями и мобильной рамки. Верхние губки служат для замера внутренней части заготовки или готового изделия, нижними измеряют внешние параметры.

В перечень контрольно-измерительных инструментов входит также штангенрейсмасс. Он похож на штангенциркуль, но имеет специальную опору. Комплектуется измерительной и разметочной стойками. Используется для разметки заготовок, замеров высоты, глубины отверстий, расположения элементов корпуса деталей.

Микрометр применяют там, где нужна точность до 0,01 мм. Прибор состоит из трубки со шкалой, гильзы и наконечника. Заданную величину устанавливают вращением гильзы. Разновидностью микрометра является микрометрический глубиномер. Вместо скобы он снабжен особым стержнем, при помощи которого замеряется глубина отверстий в деталях.

Столярный измерительный инструмент

Большинство контрольно измерительных инструментов носят универсальный характер, используются мастерами разных профессий. Однако есть такие, которыми пользуются только в столярных мастерских. Это:

В арсенале профессионала любого уровня всегда есть измерительные инструменты и приборы, без которых невозможно хорошо сделать работу. Важно не только уметь правильно ими пользоваться, но также обеспечить достойные условия для хранения. Инструменты из металла и дерева следует беречь от попадания влаги, пластмассовые – от прямых солнечных лучей и высокой температуры. А лучше всего, когда у каждого предмета есть чехол или специальный короб.

Всякий инструментарий требует периодических проверок, поверок. Некоторые измерители надо подвергать калибровке. О такой необходимости указывает производитель в паспорте на изделие или прибор. Грамотное отношение к измерителям – это качественное выполнение работ и долгий срок службы инструмента.

Видео

 
Статьи по теме:
Работает ли визуализация и как её использовать
Мечты сбываются. С этим утверждением согласятся многие. А тем, кто будет протестовать, будет очень полезной данная статья. Ведь визуализация желаний - это первый путь к достижению поставленных перед собой целей.Что это такое?В самом начале нужно понять, о
Понятие о модернизме в литературе
Модернизм в литературе зарождается накануне Первой мировой войны и достигает расцвета в двадцатые годы одновременно во всех странах Западной Европы и в Америке. Модернизм — явление интернациональное, состоящее из разных школ (имажизм, дадаизм, экспрессио
Февральская революция: причины, участники и события
Великая русская революция - это революционные событий, произошедшие в России в 1917 году, начиная со свержения монархии во время Февральской революции, когда власть перешла к Временному правительству, которое было свергнуто в результате Октябрьской револю
Космические исследования: покорители космоса, ученые, открытия Исследование космического пространства с помощью космических аппаратов
Человека всегда интересовало, как устроен окружающий его мир. На первых порах это были простые наблюдения и наивные толкования происходящих явлений. Они дошли до нас в виде сказаний и мифов. Постепенно знания накапливались. Древние учёные, наблюдая за Сол