Измерение расстояний в мировом пространстве. Определение расстояний до тел солнечной системы Лазерный метод определения расстояния до небесных тел

Используя третий закон Кеплера, среднее расстояние всех планет от Солнца можно выразить через среднее расстояние Земли от Солнца. Определив его в километрах, можно найти в этих единицах все расстояния в Солнечной системе.

С 40-х годов нашего века радиотехника позволила определять расстояния до небесных тел посредством радиолокации, о которой вы знаете из курса физики. Советские и американские ученые уточнили радиолокацией расстояния до Меркурия, Венеры, Марса и Юпитера.

Классическим способом определения расстояний был и остается угломерный геометрический способ. Им определяют расстояния и до далеких звезд, к которым метод радиолокации неприменим. Геометрический способ основан на явлении параллактического смещения.

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя (рис. 36).

Рис. 36. Измерение расстояния до недоступного предмета по параллактическому смещению.

Посмотрите на вертикально поставленный карандаш сначала одним глазом, затем другим. Вы увидите, как он при этом переменил положение на фоне далеких предметов, направление на него изменилось. Чем дальше вы отодвинете карандаш, тем меньше будет параллактическое смещение. Но чем дальше отстоят друг от друга точки наблюдения, т. е. чем больше базис, тем больше параллактическое смешение при той же удаленности предмета. В нашем примере базисом было расстояние между глазами. Принцип параллактического смещения широко используется в военном деле при определении расстояния до цели посредством дальномера. В дальномере базисом является расстояние между объективами.

Для измерения расстояний до тел Солнечной системы за базис берут радиус Земли. Наблюдают положение светила, например Луны, на фоне далеких звезд одновременно из двух обсерваторий. Расстояние между обсерваториями должно быть как можно больше, а соединяющий их отрезок должен составлять угол, по возможности близкий к прямому с направлением на светило, чтобы параллактическое смещение было максимальным. Определив из двух точек А и В (рис. 37) направления на наблюдаемый объект, несложно вычислить угол р, под которым с этого объекта был бы виден отрезок, равный радиусу Земли.

Рис. 37. Горизонтальный параллакс светила.

Угол, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом .

Чем больше расстояние до светила, тем меньше угол р. Этот угол равен параллактическому смещению светила для наблюдателей, находящихся в точках Л и В, точно так же как СЛВ для наблюдателей веточках С и В (рис. 36). CAB удобно определять по равному ему ВCA а равны они, как углы при параллельных прямых (DC параллельна AB по построению).

Расстояние

где R - радиус Земли. Приняв R за единицу, можно выразить расстояние до светила в земных радиусах.

Параллакс Луны составляет 57". Все планеты и Солнце гораздо дальше, и их параллаксы составляют секунды. Параллакс Солнца, например, рс = 8,8". Параллаксу Солнца соответствует среднее расстояние Земли от Солнца, примерно равное 150 000 000 км. Это расстояние принимается за одну астрономическую единицу (1 а. е.). В астрономических единицах часто измеряют расстояния между телами Солнечной системы.

Рис. 38. Определение линейных размеров небесных светил по их угловым размерам.

При малых углах sin р = p, если угол р выражен в радианах. Если р выражен в секундах дуги, то вводится множитель

где 206265 - число секунд в одном радиане.

Знание этих соотношений упрощает вычисление расстояния по известному параллаксу:

  1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля?
  2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удаленной точке (апогее) 405 000 км. Определите величину горизонтального параллакса Луны в этих положениях.
  3. Измерьте транспортиром угол DCA (рис. 36) и угол ASC (рис. 37), линейкой - длину базисов. Вычислите по ним соответственно расстояния СА и SC и проверьте результат прямым измерением по рисункам.
  4. Измерьте на рисунке 38 транспортиром углы р и Q и определите по полученным данным отношение диаметров изображенных тел.

Согласно теории всемирного тяготения всякое массивное, изолированное тело, вращающееся вокруг оси с определенной скоростью (не очень быстро), должно принять форму, близкую к шару. Действительно, все наблюдаемые массивные небесные тела (Солнце, Луна, планеты) имеют формы, мало отличающиеся от правильных шаров. Шарообразность Земли хорошо видна на ее фотографиях, полученных из космоса (1967-1969 гг.).

Шарообразность Земли позволяет определить ее размеры способом, который был впервые применен еще Эратосфеном в III в. до н. э. Идея этого способа проста. Возьмем на земном шаре две точки O 1 и О 2 , лежащие на одном географическом меридиане (рис. 38). Обозначим длину дуги меридиана O 1 O 2 (например, в километрах) через, а ее угловое значение (например, в градусах) - через°. Тогда длина дуги 1° меридианабудет равна, а длина всей окружности меридианагде R - радиус земного шара. Отсюда

Угловое значение дуги ° равно разности географических широт точек O 1 и О 2 , т.е.° =-.

Значительно сложнее определить линейное расстояние между точками O 1 и О 2 . Длина дугиопределяется путем вычислений с помощью специального способа, который требует непосредственного измерения только сравнительно небольшого расстояния - базиса и ряда углов. Этот способ разработан в геодезии и называетсятриангуляцией .

Суть метода триангуляции заключается в следующем. По обе стороны дуги O 1 О 2 (рис. 39), длину которой необходимо определить, выбирается несколько точек А, В, С, ... на расстояниях 30-40 км одна от другой. Точки выбираются так, чтобы из каждой были видны по меньшей мере две другие точки. Во всех точках устанавливаются геодезические сигналы - вышки в форме пирамид - высотой в несколько десятков метров. Наверху сигнала устраивается площадка для наблюдателя и инструмента. Расстояние между какими-нибудь двумя точками, например O 1 А, выбирается на совершенно ровной поверхности и принимается за базис. Длину базиса очень тщательно измеряют непосредственно с помощью специальных мерных лент. Наиболее точные современные измерения базиса длиной в 10 км производятся с ошибкой ±2 мм. Затем устанавливают угломерный инструмент (теодолит)

последовательно в точках O 1 , A, В, С, ..., O 2 и измеряют все углы треугольников O 1 АВ, АВС, BCD, ... Зная в треугольнике O 1 AB все углы и сторону O 1 A (базис), можно вычислить и две другие его стороны O 1 B и АВ. При этих вычислениях учитывается, что треугольники не плоские, а сферические. Далее, определив из точки O 1 азимут направления стороны O 1 В (или O 1 A), можно спроецировать ломаную линию O 1 ВDO 2 (или O 1 АСЕO 2) на меридиан O 1 O 2 , т.е. получить длину дуги O 1 O 2 в линейных мерах.

6.2. Определение расстояний до небесных тел

Зная горизонтальный экваториальный параллакс р 0 светила, легко определить его расстояние от центра Земли (см. рис. 20). Действительно, если ТО = R 0 есть экваториальный радиус Земли, ТМ =- расстояние от центра Земли до светила М, а угол р - горизонтальный экваториальный параллакс светила р 0 , то из прямоугольного треугольника ТОМ имеем

Для всех светил, кроме Луны, параллаксы очень малы. Поэтому формулу (3.1) можно написать иначе, положив

а именно,

(3.2)

Расстояние получается в тех же единицах, в которых выражен радиус Земли R 0 . По формуле (3.2) определяются расстояния до тел Солнечной системы. Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946 г. была произведена радиолокация Луны, а в 1957-1963 гг.- радиолокация Солнца, Меркурия, Венеры, Марса и Юпитера. По скорости распространения радиоволн с = 3 × 105 км/сек и по промежутку времени t (сек) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела

Много времени назад люди еще не знали, что ежесуточные и годичные изменения положения звезд и планет относительно друг друга и горизонта происходят не потому, что Вселенная вращается вокруг , и не потому, что как бы обегает Землю. как было установлено позже, причиной такого движения является движение самой Земли, прежде всего вокруг своей собственной оси и вокруг . Только выяснив это, люди смогли подойти к определению реальных расстояний до удаленных от Земли небесных тел, размеров светил и их движений.

Расстояние до небесных светил астрономы определяют подобно тому, как артиллеристы определяют расстояние до цели. Для этого применяются разные приборы (например, дальномеры), но сущность всех этих способов одна и та же.

Предмет, расстояние до которого нужно установить, рассматривают одновременно с двух различных точек, откуда его видно по разным направлениям. Если два человека, находящиеся на расстоянии 10 м друг от друга, начнут целиться из винтовок в один и тот же предмет, который удален от них на 100 м, то винтовки не будут параллельны друг другу. Они образуют между собой угол. Чем дальше будет находиться цель от стрелков, тем меньше будет и этот угол.

Если известно расстояние между наблюдателями и угол между направлениями, под которым видна цель, можно установить расстояние до нее. Это производится с помощью тригонометрии . Ученые тоже «целятся» на звезды, но только телескопами. Угол между направлениями двух телескопов на звезду вычисляют с помощью специальных приборов - разделенных кругов - они могут измерить его с точностью до 1/100 доли секунды дуги. При отсчетах самых мелких частей дуги астрономы используют микроскопы.

Небесные светила находятся очень далеко от Земли. Чтобы заметить, различие в направлениях, по которым видно светило, ученые должны находиться по возможности на расстоянии многих тысяч километров друг от друга.

Например, для этой цели один астроном наблюдает светило в центральной Европе, а другой в то же время наблюдает его в уже в Африке.

Производя наблюдения с двух отдаления точек земного шара, астрономы определили расстояние до наиболее близких к нам небесных тел: Луны, Солнца и планет.

Но даже самые точные измерения не могут таким способом привести к вычислению расстояний до звезд. Диаметр земного шара слишком мало для того, чтобы, наблюдая с противоположных его точек, можно было заметить различные углы направлений на звезды.

Однако около ста лет назад русскому ученому В. Я. Струве удалось впервые установить расстояние до одной из ближайших к нам звезд. Но для этого ему пришлось наблюдать ее не с концов земного метра, а с концов прямой линии, в 23 600 раз более длинной. Где же он смог взять такую прямую линию, которая на земном шаре никак не может уместиться? Оказывается, линию можно взять в природе - это диаметр земной орбиты. Чтобы проехать вдоль диаметра земной орбиты, равняющегося 300 млн. км, на курьерском поезде, идущем со скоростью 100 км/час, пришлось бы затратить более 340 лет!

Этого не нужно делать. За полгода земной шар переносит нас на другую сторону от Солнца, на другой конец диаметра земной орбиты, и, лишь наблюдая с концов его, можно заметить ничтожно малое различие в направлениях, по которым видны ближайшие звезды. Правда, наблюдения при этом приходится производить не одновременно, а в моменты, отделенные друг от друга промежутком в полгода. За это время изучаемая звезда переместится в пространстве на огромное расстояние вследствие своего движения, но это расстояние ничтожно мало в сравнении с расстоянием от нас до звезды, и его можно не принимать во внимание. Точно так же артиллеристу, вычисляющему многокилометровое расстояние до позиции неприятеля, безразлично, сделает ли кто-нибудь во вражеском штабе шаг вперед или шаг назад. Его вычисления будут достаточно точны без учета последнего обстоятельства.

Астрономы установили, что даже ближайшая к Земле звезда находится далеко-далеко за пределами солнечной системы. Эти расстояния так велики, что выражать их в километрах трудно. Поэтому их выражают в единицах времени, которое нужно свету, чтобы пройти это расстояние. Свет движется очень быстро и за 1 сек. распространяется на 300 тыс. км. Когда сверкает молния, то свет ее доходит до нас за ничтожно малую долю секунды. От Луны до Земли свет идет 1,25 сек., от Солнца - 8 минут, от самой далекой планеты, Плутона, около 5 часов, а от ближайшей звезды - более 4 лет! Курьерский поезд, идя без остановки со скоростью 100 км/час, добрался бы до ближайшей звезды, называемой альфой Центавра, только через 46 млн. лет. А ведь это самая близкая звезда! Ее расстояние от Земли ничтожно сравнительно с расстоянием дальних звезд Млечного Пути.

Измерения расстояний до звезд окончательно доказали, что они находятся от нас на разных расстояниях и вовсе не расположены на поверхности круглого купола, каким кажется звездное небо. Оно нам кажется опрокинутым над Землю шаром, окружающим со всех сторон нашу планету, только потому, что невооруженный глаз не воспринимает различия в расстояниях до разных звезд.

Какая-нибудь планета же намного большая, чем , находящаяся от Земли на расстоянии ближайшей звезды, была бы совершенно невидима. На таком огромном расстоянии Солнце освещало бы ее слишком слабо, да и на пути к нам отраженный свет ослабевал бы слишком сильно. Из этого необходимо заключить, что звезды светят своим собственным, чрезвычайно ярким светом, т. е, являются самосветящимися солнцами.

Разработки уроков (конспекты уроков)

Среднее общее образование

Линия УМК Б. А. Воронцова-Вельяминова. Астрономия (10-11)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Цель урока

Исследовать астрономические методы определения расстояний и размеров тел в Солнечной системе.

Задачи урока

  • Проанализировать методы определения расстояний до небесных тел в Солнечной системе: по параллаксу, радиолокационный метод, метод лазерной локации; исследовать методологические основы определения размеров Земли Эратосфеном; изучить методы определения размеров небесных тел: метод триангуляции, метод углового радиуса.

Виды деятельности

    Строить логичные устные высказывания; выявлять противоречия; использовать методы измерения параметров макрообъектов (расстояний и размеров тел в Солнечной системе); выполнять логические операции – анализ, сравнение; организовывать самостоятельную познавательную деятельность; применять знания для решения задач; осуществлять рефлексию познавательной деятельности.

Ключевые понятия

    Горизонтальный параллакс, угловые размеры объекта, метод определения расстояний по параллаксам светил, радиолокационный метод, метод лазерной локации, эмпирический метод определения размеров Земли.
Название этапа Методический комментарий
1 1. Мотивация к деятельности В ходе беседы внимание акцентируется на границах применимости и значении законов Кеплера.
2 2.1 Актуализация опыта и предшествующих знаний В ходе обсуждения вопросов подчеркивается прикладное значение законов Кеплера.
3 2.2 Актуализация опыта и предшествующих знаний Учитель организует фронтальное решение задач, при этом акцентируется внимание на логике рассуждений.
4 3.1 Выявление затруднения и формулировка целей деятельности При обсуждении ответов на вопросы учитель подводит учащихся к выводу об ограниченности метода определения расстояний с использованием законов Кеплера, необходимости нахождения методов для определения размеров небесных тел. Совместно с учащимися учитель формулирует тему урока.
5 3.2 Выявление затруднения и формулировка целей деятельности С опорой на слайд-шоу в беседе с учащимися формулируется ценность владения методами определения расстояний до небесных тел и их размеров для научных и практических целей: только зная расстояния можно говорить о природе небесных тел (изображение 1), обеспечивать безопасность окружающего Землю пространства (изображение 2), проводить расчеты траекторий полетов космических аппаратов (изображения 3, 4).
6 4.1 Открытие нового знания учащимися Используя слайд-шоу, учитель организует беседу об особенностях методов определения расстояний до небесных тел и их размеров. Учащиеся подводятся к выводам о невозможности использования прямых измерений, зависимости метода от точности измерения других физических параметров небесных объектов, единстве методов для всех небесных тел Солнечной системы, включая и самое близкое. Важно спросить учащихся о самом близком объекте и подчеркнуть, что это не Луна, а Земля.
7 4.2 Открытие нового знания учащимися В беседе с опорой на слайд-шоу необходимо актуализировать знания о длине дуги центрального угла в 1°, равенстве синуса малого угла величине самого угла, взаимосвязи радианной и градусной мер угла.
8 4.3 Открытие нового знания учащимися Используя рисунки, вводится понятие «базиса», анализируется понятие параллакса.
9 4.4 Открытие нового знания учащимися Учащиеся знакомятся с методом горизонтального параллакса, подчеркивается возможность взаимной проверки точности методов определения расстояний с использованием законов Кеплера и горизонтального параллакса. Учащиеся заносят в таблицу «Методы определения расстояний в астрономии» характеристику метода горизонтального параллакса.
10 4.5 Открытие нового знания учащимися Учащиеся представляют доклады «Радиолокационный метод в астрономии», «Лазерная локация и ее использование в астрономии». В ходе представления докладов демонстрируются изображения 1 и 2 для радиолокационного метода и изображение 3 для метода лазерной локации. В ходе обсуждения подчеркивается суть данных методов и их физическая основа. Учащиеся заполняют таблицу, характеризуя методы радиолокации и лазерной локации.
11 4.6 Открытие нового знания учащимися Учащиеся, используя текст, характеризуют в соответствии с предложенным планом метод определения длины дуги меридиана. После выполнения задания учитель организует обсуждение результатов.
12 4.7 Открытие нового знания учащимися Учащиеся, используя рисунок, анализируют способ триангуляции, внося характеристики в таблицу «Методы определения расстояний и размеров тел в астрономии».
13 4.8 Открытие нового знания учащимися Учащиеся, используя рисунок, анализируют метод определения размера светила по его угловому радиусу, вносят характеристики в таблицу «Методы определения расстояний и размеров тел в астрономии».
14 5.1 Включение нового знания в систему Учитель организует фронтальное обсуждение вопросов, направленных на выявление границ применимости методов. В беседе учащиеся приходят к выводу о единстве методов определения размеров Земли и расстояний до небесных тел, достоверности методов.
15 5.2 Включение нового знания в систему Учитель сопровождает процесс анализа типовых задач, комментирует каждый этап - от записи данных до получения числового значения искомой величины и ее единицы.
16 5.3 Включение нового знания в систему Учитель сопровождает процесс выполнения учащимися заданий на применение полученных знаний.
17 6. Рефлексия деятельности В ходе обсуждения ответов на рефлексивные вопросы необходимо акцентировать внимание на значимости законов Кеплера для последующих теоретических и практических открытий.
18 7. Домашнее задание

П. П. Добронравин

У каждого, кто начинает знакомиться с астрономией и узнает, что до Луны 380 тыс., а до Солнца 150 млн. км, что звездные расстояния измеряются вместо километров сотнями, тысячами и миллионами «световых лет» и «парсеков», возникает вполне естественное и законное сомнение: «А как же измерили эти расстояния, эти миллионы и миллиарды километров? Ведь до Луны, а тем более до Солнца и звезд добраться нельзя, следовательно, нельзя применить и обычные способы измерения расстояний».

Наука и жизнь // Иллюстрации

Рис. 1. Измерение расстояния до недоступного предмета.

Рис. 2. Измерение расстояния до Луны (относительное расстояние Луны и звезды Е сильно искажено).

Наука и жизнь // Иллюстрации

Рис. 3. Прохождение Венеры по диску Солнца (относительные размеры Солнца, Земли и Венеры не в масштабе).

Рис. 4. Противостояние Марса.

Рис. 5. Расположение орбит Марса, Эроса и Земли.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Цель этой статьи - изложить вкратце способы, которыми астрономы измеряют расстояния до тел солнечной системы - Луны и Солнца. Определению расстояний более отдаленных объектов - звезд и туманностей - мы посвятим другую статью в с дном из ближайших номеров нашего журнала.

Измерение расстояния до Луны

Способы, применяемые астрономами для определения расстояния до близких к нам небесных тел, в принципе те же самые, которые применяют геодезисты при съемочных работах, землемеры, саперы, артиллеристы и т. д.

Как измерить расстояние до предмета, подойти к которому нельзя, например, до дерева на противоположной стороне реки (рис. 1)?

Топограф или землемер поступит просто. Он отложит на «своем» берегу линию АВ и измерит ее длину. Затем, став на один конец линии в точку А, измерит угол CAB - между направлением своей линии и направлением на предмет С. Перейдя в точку В он измерит угол СВА. А дальше можно поступить двумя способами: можно отложить на бумаге линию АВ в масштабе и построить на ее концах углы CAB и СВА, пересечение сторон которых и дает на плане точку С. Расстояние ее от точек А и В (да и от любой другой точки, отмеченной на плане) представит соответствующее действительное расстояние в том же самом масштабе, в котором изображена линия АВ. Или же можно по формулам тригонометрии, зная одну сторону треугольника и два его угла, вычислить все другие его линии, в том числе и высоту СН - расстояние точки С - далекого дерева до проведенной землемером линии АВ.

Точно так же поступили и астрономы, определяя расстояние до Луны. Если в один и тот же момент два наблюдателя сфотографируют небо с Луной из двух далеких друг от друга мест А и В (рис. 2) и затем сравнят свои снимки, они увидят, что положение Луны относительно звезд несколько различно. Например, звезда Е на снимке наблюдателя А будет видна к северу от Луны, а у наблюдателя В - к югу.

Измеряя снимки или, что проще, определяя положение Луны на небе в двух местах с помощью специальных телескопов, снабженных угломерными приспособлениями, можно по видимому смещению Луны найти и ее расстояние до Земли. Вспомним одну простую теорему из геометрии - сумма углов в четырехугольнике равна 360° - и применим ее к Земле и Луне.

Измерения дадут величину углов z 1 и z 2 - углов между вертикальным направлением в обоих местах и направлением на Луну. Предположим, для простоты, что места А и В лежат на одном меридиане, т. е. на круге, проходящем через оба полюса Земли. ЕЕ - земной экватор и утлы φ 1 и φ 2 -географические широты обоих мест.

Применяя теорему к четырехугольнику OALB, где О - центр Земли, найдем, что

[(180° - z 1)+φ 1 + φ 12 + (180°-z 2)[+] p]= 360°

р = (z 1 + z 2) - (φ 1 + φ 2)

По известным углам найдем угол р, под которым из центра Луны видна линия АВ. Длина линии АВ известна, так как известен радиус Земли и положение мест наблюдения А и В. По длине этой линии и углу р, так же как и в случае недоступного предмета, можно вычислить расстояние до Луны.

Угол, под которым из центра Луны или другого небесного тела видна линия, длиной равная радиусу Земли, называется параллаксом этого небесного светила. Измерив угол р для любой линии АВ, можно вычислить и параллакс Луны.

Такие измерения были сделаны еще древними греками. Современные точные намерения дают для параллакса Луны на ее среднем расстоянии от Земли величину немного меньше градуса - 57" 2",7, т. е. Земля видна с Луны как диск диаметром почти в 2° (в 4 раза больше диаметра видимого нами диска Луны).

Отсюда следует между прочим тесьма интересный вывод: жители Луны (если бы они были там) с большим правом смогли бы сказать, что Земля служит для освещения Луны, чем мы говорим обратное. В самом деле: диск Земли, видимый с Луны, по площади в 14 раз больше видимого нами диска Луны; а так как каждый участок поверхности диска Земли отражает в 6 раз больше света (из-за наличия атмосферы), чем такой же участок диска Луны, то Земля посылает на Луну в 80 раз больше света, чем Луна на Землю (при одинаковых фазах).

По параллаксу Луны сейчас же находим, что расстояние до нее в 60,267 раз больше радиуса Земли или равно 384 400 км.

Однако - это среднее расстояние: путь Луны не точный круг, и Луна, обращаясь вокруг Земли, то подходит к ней на 363000 км, то удаляется на 405 000 км.

Так решается первая, самая простая задача - измерение расстояния до самого близкого к нам небесного тела. Это сравнительно не трудно, потому что видимое смещение Луны велико, и его можно было измерить с помощью даже тех примитивных приборов, которыми пользовались древние астрономы.

Чему равно расстояние до Солнца

Казалось бы, можно применить тот же самый способ и для измерения расстояния: до Солнца - произвести одновременные наблюдения в двух местах, вычислить углы четырехугольников и треугольников, и задача решена. На деле, однако, обнаружилось весьма много трудностей.

Уже древние греки установили, что Солнце во много раз дальше Луны, но во сколько именно - установить не смогли.

Древнегреческий астроном Аристарх нашел, что Солнце в 20 раз дальше Луны; это измерение было неверно. В 1650-1675 гг. голландские и французские астрономы показали, что Солнце дальше Луны примерно в 400 раз. Стало понятным, почему не удавались попытки обнаружить видимое смещение Солнца, как это удалось сделать для Луны. Ведь параллакс Солнца в 400 раз меньше параллакса Луны, всего около 1/400 градуса, или 9 сек. дуги. А это значит, что даже при наблюдении с двух мест Земли, лежащих на противоположных концах диаметра Земли, например с северного и южного полюсов, видимое смещение Солнца было бы равно видимой толщине проволоки в 0,1 мм (человеческий волос) при рассматривании ее с расстояния в 1,5 м. Величина ничтожная, и заметить ее трудно, хотя и возможно с помощью точного угломерного прибора.

Но возникают большие добавочные трудности. Луну наблюдают ночью и ее положение сравнивают с положениями соседних звезд. Днем звезд не видно, и сравнивать положение Солнца не с чем, приходится целиком полагаться на разделенные круги самого прибора. Прибор нагревается лучами Солнца, различные части его деформируются, вызывая появление новых ошибок. Да и сам воздух, нагретый лучами Солнца, неспокоен, край Солнца кажется волнующимся, дрожащим, по небу как бы бегут волны. Погрешности наблюдений будут больше той величины, которую необходимо измерить. От самого простого метода пришлось отказаться и пойти обходными путями.

Наблюдения видимых движений планет производились еще в глубокой древности. Из сравнения этих наблюдений с современными удалось с очень большой точностью определить время обращения планет вокруг Солнца. Так например, мы знаем что Марс совершает свой оборот в 1,8808 земных года. Но третий закон Кеплера говорит: «Квадраты времен обращения планет относятся, как кубы их средних расстояний от Солнца». Отсюда, принимая за единицу среднее расстояние Земли от Солнца, можно вычислить, что среднее расстояние Марса равно 1,5237. Таким путем можно построить точный «план» солнечной системы, нанести орбиты планет, Земли, комет, но у плана будет не хватать «мелочи» - масштаба. Мы сможем уверенно сказать, что Венера в 1,38 раза ближе к Солнцу, чем Земля, а Марс в 1,52 раз дальше, но ничего не будем знать о том, сколько же километров от Венеры или Земли до Солнца. Достаточно, однако, найти хотя бы одно из расстояний в километрах: мы получим в свои руки масштаб и, пользуясь им, сможем измерить любое расстояние на плане.

Именно этот способ был применен для измерения расстояния от Солнца до Земли. Меркурий и Венера находятся ближе к Солнцу, чем Земля. Может оказаться, что когда Земля и Венера будут находиться по одну сторону от Солнца, - центры Солнца и обеих планет окажутся на одной "прямой линии (рис. 3). Венера будет видна с Земли на диске Солнца. Расстояние от Земли до Венеры будет почти в 4 раза меньше расстояния до Солнца, а параллакс ее почти в 4 раза больше параллакса Солнца. Кроме того, нужно будет определить положение Венеры относительно центра Солнца, что можно сделать гораздо точнее, чем определение видимого положения Солнца (ошибки, присущие инструменту, влияют значительно меньше при определении относительного положения двух небесных тел).

Если бы движение Земли и Венеры происходило в одной и той же плоскости, то «прохождения Венеры по диску Солнца» наблюдались бы каждый раз, когда Венера, движущаяся быстрее Земли, обгоняет ее, т. е. примерно раз в 1 год и 7 мес. Но плоскости путей Земли и Венеры наклонены друг к другу. Обгоняя Землю, Венера проходит выше или ниже Солнца и не может быть наблюдаема, так как она повернута к Земле темной, не освещенной Солнцем стороной. Мы увидим ее на диске Солнца лишь в том случае, если и «обгон» будет происходить вблизи линии пересечения плоскостей орбит обеих планет.

Такое «счастливое совпадение» случается не часто. После одного прохождения второе следует через 8 лет, но зато следующее - лишь через 105-120 лет. Впервые явление наблюдали в 1639 г. Следующие прохождения - 1761, 1769, 1874 и 1882 гг. наблюдались уже весьма тщательно для определения точного расстояния до Солнца. Для наблюдения последних двух прохождений было снаряжено большое число специальных экспедиций. Наблюдатели в далеко расположенных пунктах с наибольшей доступной точностью наблюдали моменты начала и конца явления, а также положение Венеры на диске Солнца. При наблюдениях последних прохождений применялось уже фотографирование Солнца. Видимый путь Венеры по диску Солнца будет несколько смещен у обоих наблюдателей (рис. 3). Из величины смещения можно вычислить расстояние от Земли до Венеры, т. е. найти тот ключ, масштаб, которого недоставало в построенном плане солнечной системы. Наблюдений прохождений Венеры дали для параллакса Солнца величину 8",86 и для расстояния Солнца - 148 000 000 км.

Два ближайших прохождения Венеры по диску Солнца будут наблюдаться 8 июня 2004 г. и 6 июня 2012 г.

Могут наблюдаться и прохождения по диску Солнца ближайшей к Солнцу планеты - Меркурия. Они бывают значительно чаще, чем прохождения Венеры, но представляют несравненно меньше интереса для определения расстояния до Солнца: в момент прохождения расстояние от Земли до Меркурия составляет около 90 млн. км, и параллакс его лишь в 1,5 раза больше параллакса Солнца.

Другое удобное расположение планет бывает тогда, когда Земля, двигаясь быстрее Марса, перегоняет его (рис. 4). В это время Марс виден на ночном небе в противоположном от Солнца направлении, почему такие положения его и называются противостояниями. Расстояние между Землей и Марсом уменьшается в среднем до 78 млн. км. Однако орбита Марса сильно отлична от круга, и если сближение Марса и Земли происходит в августе - сентябре, расстояние до Марса может быть всего 56 млн. км. Марс виден всю ночь, и его положение можно очень точно определить, пользуясь как опорными точками близкими звездами.

Наблюдения из двух пунктов дадут параллакс Марса, а отсюда можно вычислить его расстояние и по нему - масштаб к плану солнечной системы. Приближения Марса и Земли - противостояния Марса - повторяются приблизительно через 2 года и 2 мес., а так называемые «великие противостояния», когда Марс ближе всего к Земле, - раз в 15 -17 лет. Последнее «великое противостояние» было 24 августа 1924 г., а следующее будет 23 июля 1939 г. Каждое противостояние используется не только для определения расстояния, но и для физических наблюдений самого Марса.

Еще ближе к Земле может подойти Эрос, одна из семейства малых планет, орбиты большинства которых лежат между орбитам Марса и Юпитера. Орбита Эроса очень сильно отлична от круга, и значительная часть ее лежит даже внутри орбиты Марса (рис. 5). В некоторых случаях расстояние между Землей и Эросом может уменьшаться до 22 млн. км, т. е. до 1/7 расстояния Солнца, довольно близко Эрос подходил к Земле в 1900-1901 гг. (на 48 млн. км) и в 1930- 1931 гг. (на 26 млн. км). Эрос наблюдался в это время, как звездочка, положение которой среди других звезд может быть определено весьма точно.

Нужно заметить, что для определения параллакса по наблюдениям Эроса не нужно обязательно производить наблюдения из двух далеких пунктов. Вращение Земли вокруг оси уносит с собой наблюдателя и, если он находится на экваторе, за 12 час. вращение Земли перенесет его на расстояние, равное диаметру Земли, или 12,7 тыс. км. Наблюдатель, расположенный к северу или к югу от экватора, переместится меньше. И если снимки Эроса произведены в начале и в конце ночи, - они равносильны снимкам, сделанным на большом расстоянии друг от друга. Нужно, конечно, принять во внимание движение Земли и Эроса по орбитам за время между снимками.

Существуют ещё другие способы измерения расстояния до Солнца, но они не являются основными, и рассматривать их мы не имеем возможности. Между прочим такой же метод использовался древними и для определения параллакса Луны.

Сопоставление всех наиболее точных определений дает для параллакса Солнца величину 8",803 с возможной ошибкой в 0",001, а отсюда - среднее расстояние Земли равно 149 450 000 км с возможной ошибкой в 17 000 км.

Среднее расстояние Солнца-Земля является основным для выражения других расстояний в солнечной системе и названо «астрономической единицей». Но действительное расстояние до Солнца может отличаться от среднего, так как путь Земли около Солнца - не круг, а эллипс. В июле расстояние до Солнца на 2,5 млн. км больше среднего, а в январе на столько же меньше.

Астрономическая единица есть та мера, которой мы измеряем «не только все расстояния до тел солнечной системы, но и расстояния самых далеких звезд, туманностей и звездных скоплений. Словом, это та мера, при помощи которой мы определяем масштаб строения вселенной. Поэтому на определения ее потрачено много усилий, и известна она современной науке с большой точностью.

Может показаться, что указанная выше ошибка в 17 000 км велика; но не надо забывать, что эта ошибка составляет лишь немногим больше 0,0001 всей астрономической единицы. Представим себе, что мы измерили длину комнаты в 9 м и при этом измерении ошиблись всего лишь на 1 мм. По сравнению с длиной комнаты эта ошибка соответствует точности, с которой известно среднее расстояние Земли от Солнца. Но если попробовать на самом деле измерить длину в 9 м с ошибкой в 1 мм, - это окажется совсем не так просто: потребуется большое внимание и хорошие измерительные инструменты, чтобы обеспечить такую точность при обыкновенном измерении по гладкому полу, во всех точках доступному измерителю. Тем более нужно отдать должное точности, с которой произведено измерение через межпланетное пространство расстояния до Солнца, к которому ни один человек ее приближался ближе чем на 147 млн. км, - расстояние, которое пушечное ядро сможет пролететь, двигаясь со скоростью 1000 м/сек, только в 4,5 года.

 
Статьи по теме:
Февральская революция: причины, участники и события
Великая русская революция - это революционные событий, произошедшие в России в 1917 году, начиная со свержения монархии во время Февральской революции, когда власть перешла к Временному правительству, которое было свергнуто в результате Октябрьской револю
Космические исследования: покорители космоса, ученые, открытия Исследование космического пространства с помощью космических аппаратов
Человека всегда интересовало, как устроен окружающий его мир. На первых порах это были простые наблюдения и наивные толкования происходящих явлений. Они дошли до нас в виде сказаний и мифов. Постепенно знания накапливались. Древние учёные, наблюдая за Сол
Как избавиться от венца безбрачия?
Полное собрание и описание: молитва для снятия венца безбрачия для духовной жизни верующего человека.Одиноких людей, не встретивших свою вторую половинку, становится все больше. Поэтому интерес к теме, как снять «венец безбрачия» все больший. Приведем про
Аллергия у грудничка, что делать, как лечить Аллергия на продукты у новорожденных
Выберите рубрику Аллергические заболевания Симптомы и проявления аллергии Диагностика аллергии Лечение аллергии Беременные и кормящие Дети и аллергия Гипоаллергенный быт Календарь аллергии Когда речь идет о медицине, очень важно понимать: ребенок – это не